Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dmytro V. Gospodaryov is active.

Publication


Featured researches published by Dmytro V. Gospodaryov.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2011

Drosophila melanogaster larvae fed by glucose and fructose demonstrate difference in oxidative stress markers and antioxidant enzymes of adult flies

Oleh V. Lushchak; Bohdana M. Rovenko; Dmytro V. Gospodaryov; Volodymyr I. Lushchak

Activities of antioxidant and associated enzymes, and oxidative stress markers were assessed in newly enclosed adult fruit flies Drosophila melanogaster developed on diets with 4 and 10% glucose or fructose. In fly males, 10% fructose promoted higher content of protein carbonyls and catalase activity, but lower superoxide dismutase (SOD) activity than 4%, while in females-lower levels of high molecular mass thiols (H-SH). Females at all diets had virtually the same level of lipid peroxides, low-molecular-mass thiols, catalase, and superoxide dismutase activities. Fed with 4% fructose and glucose males demonstrated 24 and 26% lower H-SH level than females, respectively. On diets with 4% glucose, 10% glucose and fructose females had 32, 26 and 27% lower catalase activity than respective males, and 1.3-1.5-fold lower glucose-6-phosphate dehydrogenase activity on glucose-containing diets. Strong positive correlations between H-SH level and G6PD activity, as well as between catalase and G6PDH activity were found. These results suggest that type and concentration of dietary carbohydrate affect antioxidant defense in fruit flies. It also substantially depends on fly sex, comprising presumably levels of protein carbonyls and lipid peroxides, as well as catalase and SOD activities in males and G6PDH activity in females.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2012

Balance Between Macronutrients Affects Life Span and Functional Senescence in Fruit Fly Drosophila melanogaster

Oleh V. Lushchak; Dmytro V. Gospodaryov; Bohdana M. Rovenko; Andriy D. Glovyak; Ihor S. Yurkevych; Vira P. Klyuba; Maria V. Shcherbij; Volodymyr I. Lushchak

It has recently been demonstrated that as the ratio of protein to carbohydrate (P:C) in the diet declines, life span increases in Drosophila. Here we explored how extremely low dietary ratios of protein to carbohydrate affected longevity and a selection of variables associated with functional senescence. An increase in P:C ratio from 1:57 to 1:20 shortened life span by increasing age-dependent mortality; whereas a further decline in P:C from 1:57 to 1:95 caused a modest decrease in life span. Female flies consuming the 1:20 and 1:38 diets laid more eggs than those consuming the lower P:C diets. Flies fed diets with higher ratios were more resistant to heat stress. Flies consuming the diets with lowest P:C ratios needed more time to restore activity after paralysis. Our study has therefore extended to very low P:C ratios available data demonstrating that dietary P:C ratio affects life span, fecundity and heat stress resistance, with fecundity and heat stress responses showing the opposite trend to life span.


Journal of Insect Physiology | 2015

High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster.

Bohdana M. Rovenko; Olga I. Kubrak; Dmytro V. Gospodaryov; Natalia V. Perkhulyn; Ihor S. Yurkevych; Alberto Sanz; Oleh V. Lushchak; Volodymyr I. Lushchak

The effects of sucrose in varied concentrations (0.25-20%) with constant amount of yeasts in larval diet on development and metabolic parameters of adult fruit fly Drosophila melanogaster were studied. Larvae consumed more food at low sucrose diet, overeating with yeast. On high sucrose diet, larvae ingested more carbohydrates, despite consuming less food and obtaining less protein derived from yeast. High sucrose diet slowed down pupation and increased pupa mortality, enhanced levels of lipids and glycogen, increased dry body mass, decreased water content, i.e. resulted in obese phenotype. Furthermore, it suppressed reactive oxygen species-induced oxidation of lipids and proteins as well as the activity of superoxide dismutase. The activity of catalase was gender-related. In males, at all sucrose concentrations used catalase activity was higher than at its concentration of 0.25%, whereas in females sucrose concentration virtually did not influence the activity. High sucrose diet increased content of protein thiols and the activity of glucose-6-phosphate dehydrogenase. The increase in sucrose concentration also enhanced uric acid level in females, but caused opposite effects in males. Development on high sucrose diets was accompanied by elevated steady-state insulin-like peptide 3 mRNA level. Finally, carbohydrate starvation at yeast overfeeding on low sucrose diets resulted in oxidative stress reflected by higher levels of oxidized lipids and proteins accompanied by increased superoxide dismutase activity. Potential mechanisms involved in regulation of redox processes by carbohydrates are discussed.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2015

High consumption of fructose rather than glucose promotes a diet-induced obese phenotype in Drosophila melanogaster

Bohdana M. Rovenko; Natalia V. Perkhulyn; Dmytro V. Gospodaryov; Alberto Sanz; Oleh V. Lushchak; Volodymyr I. Lushchak

During the last 20 years, there has been a considerable scientific debate about the possible mechanisms of induction of metabolic disorders by reducing monosaccharides such as glucose or fructose. In this study, we report the metabolic rearrangement in response to consumption of these monosaccharides at concentrations ranging from 0.25% to 20% in a Drosophila model. Flies raised on high-glucose diet displayed delay in pupation and increased developmental mortality compared with fructose consumers. Both monosaccharides at high concentrations promoted an obese-like phenotype indicated by increased fly body mass, levels of uric acid, and circulating and stored carbohydrates and lipids; and decreased percentage of water in the body. However, flies raised on fructose showed lower levels of circulating glucose and higher concentrations of stored carbohydrates, lipids, and uric acid. The preferential induction of obesity caused by fructose in Drosophila was associated with increased food consumption and reduced mRNA levels of DILP2 and DILP5 in the brain of adult flies. Our data show that glucose and fructose differently affect carbohydrate and lipid metabolism in Drosophila in part by modulation of insulin/insulin-like growth factor signaling. Some reported similarities with effects observed in mammals make Drosophila as a useful model to study carbohydrate influence on metabolism and development of metabolic disorders.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2014

Specific Dietary Carbohydrates Differentially Influence the Life Span and Fecundity of Drosophila melanogaster

Oleh V. Lushchak; Dmytro V. Gospodaryov; Bohdana M. Rovenko; Ihor S. Yurkevych; Natalia V. Perkhulyn; Volodymyr I. Lushchak

The fruit fly, Drosophila melanogaster is a broadly used model for gerontological research. Many studies are dedicated to understanding nutritional effects on ageing; however, the influence of dietary carbohydrate type and dosage is still poorly understood. We show that among three carbohydrates tested, fructose, glucose, and sucrose, the latter decreased life span by 13%-27%, being present in concentrations of 2%-20% in the diet. Life-span shortening by sucrose was accompanied by an increase in age-independent mortality. Sucrose also dramatically decreased the fecundity of the flies. The differences in life span and fecundity were determined to be unrelated to differential carbohydrate ingestion. The highest mitochondrial protein density was observed in flies fed sucrose-containing diet. However, this parameter was not affected by carbohydrate amount in the diet. Fly sensitivity to oxidative stress, induced by menadione, was increased in aged flies and was slightly affected by type and concentration of carbohydrate. In general, it has been demonstrated that sucrose, commonly used in recipes of Drosophila laboratory food, may shorten life span and lower egg-laying capability on the diets with very low protein content.


Longevity & Healthspan | 2013

Lifespan extension and delay of age-related functional decline caused by Rhodiola rosea depends on dietary macronutrient balance

Dmytro V. Gospodaryov; Ihor S. Yurkevych; Mahtab Jafari; Volodymyr I. Lushchak; Oleh V. Lushchak

BackgroundThis study was conducted to evaluate the effects of rhizome powder from the herb Rhodiola rosea, a traditional Western Ukraine medicinal adaptogen, on lifespan and age-related physiological functions of the fruit fly Drosophila melanogaster.ResultsFlies fed food supplemented with 5.0 mg/ml and 10.0 mg/ml of R. rosea rhizome powder had a 14% to 17% higher median lifespan, whereas at 30.0 mg/ml lifespan was decreased by 9% to 12%. The preparation did not decrease fly fecundity.The effect of R. rosea supplement on lifespan was dependent on diet composition. Lifespan extension by 15% to 21% was observed only for diets with protein-to-carbohydrate ratios less than 1. Lifespan extension was also dependent on total concentration of macronutrients. Thus, for the diet with 15% yeast and 15% sucrose there was no lifespan extension, while for the diet with protein-to-carbohydrate ratio 20:1 R. rosea decreased lifespan by about 10%.Flies fed Rhodiola preparation were physically more active, less sensitive to the redox-cycling compound menadione and had a longer time of heat coma onset compared with controls. Positive effects of Rhodiola rhizome on stress resistance and locomotor activity were highest at the ‘middle age’.ConclusionsThe present data show that long-term food supplementation with R. rosea rhizome not only increases D. melanogaster lifespan, but also delays age-related decline of physical activity and increases stress resistance, what depends on protein-to-carbohydrate ratio of the diet.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2015

Restriction of glucose and fructose causes mild oxidative stress independently of mitochondrial activity and reactive oxygen species in Drosophila melanogaster.

Bohdana M. Rovenko; Olga I. Kubrak; Dmytro V. Gospodaryov; Ihor S. Yurkevych; Alberto Sanz; Oleh V. Lushchak; Volodymyr I. Lushchak

Our recent study showed different effects of glucose and fructose overconsumption on the development of obese phenotypes in Drosophila. Glucose induced glucose toxicity due to the increase in circulating glucose, whereas fructose was more prone to induce obesity promoting accumulation of reserve lipids and carbohydrates (Rovenko et al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 180, 75-85). Searching for mechanisms responsible for these phenotypes in this study, we analyzed mitochondrial activity, mitochondrial density, mtROS production, oxidative stress markers and antioxidant defense in fruit flies fed 0.25%, 4% and 10% glucose or fructose. It is shown that there is a complex interaction between dietary monosaccharide concentrations, mitochondrial activity and oxidative modifications to proteins and lipids. Glucose at high concentration (10%) reduced mitochondrial protein density and consequently respiration in flies, while fructose did not affect these parameters. The production of ROS by mitochondria did not reflect activities of mitochondrial complexes. Moreover, there was no clear connection between mtROS production and antioxidant defense or between antioxidant defense and developmental survival, shown in our previous study (Rovenko et al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 180, 75-85). Instead, mtROS and antioxidant machinery cooperated to maintain a redox state that determined survival rates, and paradoxically, pro-oxidant conditions facilitated larva survival independently of the type of carbohydrate. It seems that in this complex system glucose controls the amount of oxidative modification regulating mitochondrial activity, while fructose regulates steady-state mRNA levels of antioxidant enzymes.


Archive | 2012

Oxidative Stress: Cause and Consequence of Diseases

Dmytro V. Gospodaryov; Volodymyr I. Lushchak

Oxidative stress, termed as an imbalance between production and elimination of reactive oxygen species (ROS) leading to plural oxidative modifications of basic and regulatory processes, can be caused in different ways. Increased steady-state ROS levels can be promoted by drug metabolism, overexpression of ROS-producing enzymes, or ionizing radiation, as well as due to deficiency of antioxidant enzymes. The plethora of ways leading eventually to oxidative stress is depicted in Figure 1. This chapter has several aims. The main aim is to show examples which mirror our knowledge on the role of oxidative stress in origin of diseases as well as its significance in disease complications. It was it that oxidative stress is described over developed pathology and nothing is told, if it was initial, triggering event or it was a consequence of the metabolic shift caused by other factors. Virtually, it would be important to develop a cure for specific diseases. The other aim of this chapter is to spotlight the role of enzyme deficiencies in promotion of oxidative stress during pathological conditions. These deficiencies are often caused by mutations in genes coding antioxidant or related enzymes, i.e. by genetic polymorphism. Mutations are preconditions for many diseases, which cannot be prevented in most cases. Nevertheless, complete understanding of the ways from the gene to disease symptoms is necessary condition for successful therapy. Attention should be paid also to full or partial loss of the enzyme activity via exogenous factors or via other indirect reasons. Many connections can be drawn between certain pathologies and oxidative modification of proteins. Most antioxidant and related enzymes are targets for oxidative modification. Hence, if oxidative stress was primary event, possible oxidative modifications of antioxidant enzymes may exacerbate diseases and define cell destiny. Finally, it is worth mentioning advantages and disadvantages of diverse models which serve for disclosing of mechanisms underlying ROS contribution to diseases. Predominant number of studies is conducted on mice and cell cultures. Significant insights were received with use of lower organisms like budding yeast, nematodes and fruit flies. All model organisms and cell cultures have certain limitations and disadvantages. So far, the largest benefit can be brought out from complex studies, involving many model systems and investigating phenomena from different points of view.


Biochimica et Biophysica Acta | 2014

Ciona intestinalis NADH dehydrogenase NDX confers stress-resistance and extended lifespan on Drosophila.

Dmytro V. Gospodaryov; Oleh V. Lushchak; Bohdana M. Rovenko; Natalia V. Perkhulyn; Mike Gerards; Tea Tuomela; Howard T. Jacobs

An assembled cDNA coding for the putative single-subunit NADH dehydrogenase (NDX) of Ciona intestinalis was introduced into Drosophila melanogaster. The encoded protein was found to localize to mitochondria and to confer rotenone-insensitive substrate oxidation in organello. Transgenic flies exhibited increased resistance to menadione, starvation and temperature stress, and manifested a sex and diet-dependent increase in mean lifespan of 20-50%. However, NDX was able only weakly to complement the phenotypes produced by the knockdown of complex I subunits.


Frontiers in Physiology | 2018

Insulin-Like Peptides Regulate Feeding Preference and Metabolism in Drosophila

Uliana V. Semaniuk; Dmytro V. Gospodaryov; Khrystyna M. Feden'ko; Ihor S. Yurkevych; Alexander M. Vaiserman; Kenneth B. Storey; Stephen J. Simpson; Oleh V. Lushchak

Fruit flies have eight identified Drosophila insulin-like peptides (DILPs) that are involved in the regulation of carbohydrate concentrations in hemolymph as well as in accumulation of storage metabolites. In the present study, we investigated diet-dependent roles of DILPs encoded by the genes dilp1–5, and dilp7 in the regulation of insect appetite, food choice, accumulation of triglycerides, glycogen, glucose, and trehalose in fruit fly bodies and carbohydrates in hemolymph. We have found that the wild type and the mutant lines demonstrate compensatory feeding for carbohydrates. However, mutants on dilp2,3, dilp3, dilp5, and dilp7 showed higher consumption of proteins on high yeast diets. To evaluate metabolic differences between studied lines on different diets we applied response surface methodology. High nutrient diets led to a moderate increase in concentration of glucose in hemolymph of the wild type flies. Mutations on dilp genes changed this pattern. We have revealed that the dilp2 mutation led to a drop in glycogen levels independently on diet, lack of dilp3 led to dramatic increase in circulating trehalose and glycogen levels, especially at low protein consumption. Lack of dilp5 led to decreased levels of glycogen and triglycerides on all diets, whereas knockout on dilp7 caused increase in glycogen levels and simultaneous decrease in triglyceride levels at low protein consumption. Fruit fly appetite was influenced by dilp3 and dilp7 genes. Our data contribute to the understanding of Drosophila as a model for further studies of metabolic diseases and may serve as a guide for uncovering the evolution of metabolic regulatory pathways.

Collaboration


Dive into the Dmytro V. Gospodaryov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mahtab Jafari

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge