Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Do Yup Lee is active.

Publication


Featured researches published by Do Yup Lee.


Analytical Chemistry | 2009

FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry.

Tobias Kind; Gert Wohlgemuth; Do Yup Lee; Yun Lu; Mine Palazoglu; Sevini Shahbaz; Oliver Fiehn

At least two independent parameters are necessary for compound identification in metabolomics. We have compiled 2 212 electron impact mass spectra and retention indices for quadrupole and time-of-flight gas chromatography/mass spectrometry (GC/MS) for over 1000 primary metabolites below 550 Da, covering lipids, amino acids, fatty acids, amines, alcohols, sugars, amino-sugars, sugar alcohols, sugar acids, organic phosphates, hydroxyl acids, aromatics, purines, and sterols as methoximated and trimethylsilylated mass spectra under electron impact ionization. Compounds were selected from different metabolic pathway databases. The structural diversity of the libraries was found to be highly overlapping with metabolites represented in the BioMeta/KEGG pathway database using chemical fingerprints and calculations using Instant-JChem. In total, the FiehnLib libraries comprised 68% more compounds and twice as many spectra with higher spectral diversity than the public Golm Metabolite Database. A range of unique compounds are present in the FiehnLib libraries that are not comprised in the 4345 trimethylsilylated spectra of the commercial NIST05 mass spectral database. The libraries can be used in conjunction with GC/MS software but also support compound identification in the public BinBase metabolomic database that currently comprises 5598 unique mass spectra generated from 19,032 samples covering 279 studies of 47 species (plants, animals, and microorganisms).


Plant Journal | 2008

Quality control for plant metabolomics: reporting MSI-compliant studies.

Oliver Fiehn; Gert Wohlgemuth; Martin Scholz; Tobias Kind; Do Yup Lee; Yun Lu; Stephanie Moon; Basil J. Nikolau

The Metabolomics Standards Initiative (MSI) has recently released documents describing minimum parameters for reporting metabolomics experiments, in order to validate metabolomic studies and to facilitate data exchange. The reporting parameters encompassed by MSI include the biological study design, sample preparation, data acquisition, data processing, data analysis and interpretation relative to the biological hypotheses being evaluated. Herein we exemplify how such metadata can be reported by using a small case study - the metabolite profiling by GC-TOF mass spectrometry of Arabidopsis thaliana leaves from a knockout allele of the gene At1g08510 in the Wassilewskija ecotype. Pitfalls in quality control are highlighted that can invalidate results even if MSI reporting standards are fulfilled, including reliable compound identification and integration of unknown metabolites. Standardized data processing methods are proposed for consistent data storage and dissemination via databases.


Plant Methods | 2008

High quality metabolomic data for Chlamydomonas reinhardtii

Do Yup Lee; Oliver Fiehn

The green eukaryote alga Chlamydomonas reinhardtii is a unicellular model to study control of metabolism in a photosynthetic organism. We here present method improvements for metabolite profiling based on GC-TOF mass spectrometry focusing on three parameters: quenching and cell disruption, extract solvent composition and metabolite annotation. These improvements facilitate using smaller cell numbers and hence, smaller culture volumes which enable faster and more precise sampling techniques that eventually lead to a higher number of samples that can be processed, e.g. for time course experiments. Quenching of metabolism was achieved by mixing 1 ml of culture to 1 ml of -70°C cold 70% methanol. After centrifugation, cells were lyophilized and disrupted by milling using 2-6E6 lyophilized cells, around 500-fold less than previously reported. Glass beads were compared to metal balls for milling, and five different extraction solvents were tested. Additionally, all peaks were annotated in an automated way using the GC-TOF database BinBase instead of manual investigation of a single reference chromatogram. Median precision of analysis was used to decide for the eventual procedure which was applied to a proof-of-principle study of time dependent changes of metabolism under standard conditions.


Molecular & Cellular Proteomics | 2012

System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium

Do Yup Lee; Jeong Jin Park; Dinesh K. Barupal; Oliver Fiehn

Drastic alterations in macronutrients are known to cause large changes in biochemistry and gene expression in the photosynthetic alga Chlamydomonas reinhardtii. However, metabolomic and proteomic responses to subtle reductions in macronutrients have not yet been studied. When ammonium levels were reduced by 25–100% compared with control cultures, ammonium uptake and growth rates were not affected at 25% or 50% nitrogen-reduction for 28 h. However, primary metabolism and enzyme expression showed remarkable changes at acute conditions (4 h and 10 h after ammonium reduction) compared with chronic conditions (18 h and 28 h time points). Responses of 145 identified metabolites were quantified using gas chromatography-time of flight mass spectrometry; 495 proteins (including 187 enzymes) were monitored using liquid chromatography-ion trap mass spectrometry with label-free spectral counting. Stress response and carbon assimilation processes (Calvin cycle, acetate uptake and chlorophyll biosynthesis) were altered first, in addition to increase in enzyme contents for lipid biosynthesis and accumulation of short chain free fatty acids. Nitrogen/carbon balance metabolism was found changed only under chronic conditions, for example in the citric acid cycle and amino acid metabolism. Metabolism in Chlamydomonas readily responds to total available media nitrogen with temporal increases in short-chain free fatty acids and turnover of internal proteins, long before nitrogen resources are depleted.


Analytical Chemistry | 2010

Evaluation of sampling and extraction methodologies for the global metabolic profiling of saccharophagus degradans

Min Hye Shin; Do Yup Lee; Kwang Hyeon Liu; Oliver Fiehn; Kyoung Heon Kim

Metabolomics is based on the unbiased and global analysis of metabolites of organisms at specific time points. Therefore, the nonselective and reproducible recovery of all existing metabolites while preventing their transformation is the ideal criterion for metabolome sample preparation. We evaluated currently used sampling methods and extraction solvents for global metabolic profiling of a gram-negative bacterium, Saccharophagus degradans, using gas chromatography-time-of-flight mass spectrometry (GC-TOF MS) with an emphasis on three steps: the sampling method, which consisted of cold methanol quenching or fast filtration; the subsequent washing step; and the extraction solvents. After cold methanol quenching with 70% (v/v) methanol at -70 degrees C, washing with 2.3% NaCl produced a serious loss of intracellular metabolites. In addition, when cold methanol quenching and fast filtration were compared, severe cell leakage caused by cold methanol quenching resulted in a significant loss of intracellular metabolites, which was confirmed by spectrometric analysis at 260 and 280 nm. Upon evaluation of extraction solvents such as pure methanol (MeOH), acetonitrile/water (50ACN; 1:1, v/v), acetonitrile/methanol/water mixture (AMW; 2:2:1), and water/isopropanol/methanol (WiPM; 2:2:5). AMW and WiPM were found to be superior extraction solvents for S. degradans based on the total peak intensities of the metabolites, the total number of metabolite peaks, and the reproducibility of recovered metabolite quantities; however, the metabolite profiles differed significantly between AMW and WiPM. This is the first evaluation of each step of sample preparation involved in global scale metabolic analysis by GC-TOF MS, which can be used as a model in the preparation of organism-specific samples for metabolome analysis.


PLOS ONE | 2012

Pharmacogenetics meets metabolomics: Discovery of tryptophan as a new endogenous OCT2 substrate related to metformin disposition

Im Sook Song; Do Yup Lee; Min Hye Shin; Hyunmi Kim; Yun Gyong Ahn; Inmyoung Park; Kyoung Heon Kim; Tobias Kind; Jae Gook Shin; Oliver Fiehn; Kwang-Hyeon Liu

Genetic polymorphisms of the organic cation transporter 2 (OCT2), encoded by SLC22A2, have been investigated in association with metformin disposition. A functional decrease in transport function has been shown to be associated with the OCT2 variants. Using metabolomics, our study aims at a comprehensive monitoring of primary metabolite changes in order to understand biochemical alteration associated with OCT2 polymorphisms and discovery of potential endogenous metabolites related to the genetic variation of OCT2. Using GC-TOF MS based metabolite profiling, clear clustering of samples was observed in Partial Least Square Discriminant Analysis, showing that metabolic profiles were linked to the genetic variants of OCT2. Tryptophan and uridine presented the most significant alteration in SLC22A2-808TT homozygous and the SLC22A2-808G>T heterozygous variants relative to the reference. Particularly tryptophan showed gene-dose effects of transporter activity according to OCT2 genotypes and the greatest linear association with the pharmacokinetic parameters (Clrenal, Clsec, Cl/F/kg, and Vd/F/kg) of metformin. An inhibition assay demonstrated the inhibitory effect of tryptophan on the uptake of 1-methyl-4-phenyl pyrinidium in a concentration dependent manner and subsequent uptake experiment revealed differential tryptophan-uptake rate in the oocytes expressing OCT2 reference and variant (808G>T). Our results collectively indicate tryptophan can serve as one of the endogenous substrate for the OCT2 as well as a biomarker candidate indicating the variability of the transport activity of OCT2.


BMC Biotechnology | 2010

Hydrocarbon phenotyping of algal species using pyrolysis-gas chromatography mass spectrometry

Dinesh K. Barupal; Tobias Kind; Shankar L Kothari; Do Yup Lee; Oliver Fiehn

BackgroundBiofuels derived from algae biomass and algae lipids might reduce dependence on fossil fuels. Existing analytical techniques need to facilitate rapid characterization of algal species by phenotyping hydrocarbon-related constituents.ResultsIn this study, we compared the hydrocarbon rich algae Botryococcus braunii against the photoautotrophic model algae Chlamydomonas reinhardtii using pyrolysis-gas chromatography quadrupole mass spectrometry (pyGC-MS). Sequences of up to 48 dried samples can be analyzed using pyGC-MS in an automated manner without any sample preparation. Chromatograms of 30-min run times are sufficient to profile pyrolysis products from C8 to C40 carbon chain length. The freely available software tools AMDIS and SpectConnect enables straightforward data processing. In Botryococcus samples, we identified fatty acids, vitamins, sterols and fatty acid esters and several long chain hydrocarbons. The algae species C. reinhardtii, B. braunii race A and B. braunii race B were readily discriminated using their hydrocarbon phenotypes. Substructure annotation and spectral clustering yielded network graphs of similar components for visual overviews of abundant and minor constituents.ConclusionPyrolysis-GC-MS facilitates large scale screening of hydrocarbon phenotypes for comparisons of strain differences in algae or impact of altered growth and nutrient conditions.


Biotechnology and Bioengineering | 2010

Global metabolic profiling of plant cell wall polysaccharide degradation by Saccharophagus degradans

Min Hye Shin; Do Yup Lee; Kirsten Skogerson; Gert Wohlgemuth; In Geol Choi; Oliver Fiehn; Kyoung Heon Kim

Plant cell wall polysaccharides can be used as the main feedstock for the production of biofuels. Saccharophagus degradans 2–40 is considered to be a potent system for the production of sugars from plant biomass due to its high capability to degrade many complex polysaccharides. To understand the degradation metabolism of plant cell wall polysaccharides by S. degradans, the cell growth, enzyme activity profiles, and the metabolite profiles were analyzed by gas chromatography‐time of flight mass spectrometry using different carbon sources including cellulose, xylan, glucose, and xylose. The specific activity of cellulase was only found to be significantly higher when cellulose was used as the sole carbon source, but the xylanase activity increased when xylan, xylose, or cellulose was used as the carbon source. In addition, principal component analysis of 98 identified metabolites in S. degradans revealed four distinct groups that differed based on the carbon source used. Furthermore, metabolite profiling showed that the use of cellulose or xylan as polysaccharides led to increased abundances of fatty acids, nucleotides and glucuronic acid compared to the use of glucose or xylose. Finally, intermediates in the pentose phosphate pathway seemed to be up‐regulated on xylose or xylan when compared to those on glucose or cellulose. Such metabolic responses of S. degradans under plant cell wall polysaccharides imply that its metabolic system is transformed to more efficiently degrade polysaccharides and conserve energy. This study demonstrates that the gas chromatography‐time of flight mass spectrometry‐based global metabolomics are useful for understanding microbial metabolism and evaluating its fermentation characteristics. Biotechnol. Bioeng. 2010; 105: 477–488.


New Biotechnology | 2010

Global metabolite profiling of agarose degradation by Saccharophagus degradans 2-40

Min Hye Shin; Do Yup Lee; Gert Wohlgemuth; In Geol Choi; Oliver Fiehn; Kyoung Heon Kim

Saccharophagus degradans is a potent degrader of marine and plant cell wall polysaccharides. In particular, it is capable of degrading and metabolizing agarose that is the main component of marine red algae. To understand its degradation and metabolism of agarose along with the agarase expression profile, S. degradans was grown using different carbon sources including galactose, agarose, glucose and cellulose. The metabolite profiling was conducted by using GC-TOF MS and in-house programmed database, BinBase. When the metabolite profiles of cells on galactose and agarose were compared, principal component analysis of 133 identified metabolites revealed clear separations between the groups on galactose and agarose. S. degradans grown on agarose was found to use different carbon catabolic pathways from that grown on other carbon sources. The metabolite profile of cells grown using galactose had increased abundances of glycerol, glycerol derivatives and fatty acids. The use of polysaccharides such as agarose or cellulose led to the increased abundances of amino acids and intermediates of nucleotide biosynthesis.


Analytical and Bioanalytical Chemistry | 2014

Comparative evaluation of extraction methods for simultaneous mass-spectrometric analysis of complex lipids and primary metabolites from human blood plasma

Do Yup Lee; Tobias Kind; Young Ran Yoon; Oliver Fiehn; Kwang-Hyeon Liu

AbstractMetabolomic results on human blood plasma largely depend on the sample preparation protocols employed for protein precipitation and metabolite extraction. Five different extraction methods were examined, which can be grouped into two categories, liquid-liquid extraction and protein precipitation methods, including long-standing protocols such as the Folch extraction and Bligh-Dyer extraction in comparison to modern methods such as the Matyash protocol and two global metabolite extraction methods. Extracts were subjected to analysis of blood plasma lipids and primary metabolites by using chip-based direct infusion nanoelectrospray tandem mass spectrometry and gas chromatography coupled to time-of-flight mass spectrometry, respectively. Optimal extraction schemes were evaluated based on the number of identified metabolites, extraction efficiency, compound diversity, reproducibility, and convenience for high-throughput sample preparations. Results showed that Folch and Matyash methods were equally valid and robust for lipidomic assessments while primary metabolites were better assessed by the protein precipitation methods with organic solvent mixtures. Graphical AbstractSchematic workflow of five extraction methods and subsequent mass spectrometry analysis using GC-TOF MS and nanoelectrospray direct-infusion ion trap MS/MSᅟ

Collaboration


Dive into the Do Yup Lee's collaboration.

Top Co-Authors

Avatar

Oliver Fiehn

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobias Kind

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yun Lu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge