Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dolan Sondhi is active.

Publication


Featured researches published by Dolan Sondhi.


Human Gene Therapy | 2008

Treatment of Late Infantile Neuronal Ceroid Lipofuscinosis by CNS Administration of a Serotype 2 Adeno-Associated Virus Expressing CLN2 cDNA

Stefan Worgall; Dolan Sondhi; Neil R. Hackett; Barry E. Kosofsky; Minal V. Kekatpure; Nurunisa Neyzi; Jonathan P. Dyke; Douglas Ballon; Linda Heier; Bruce M. Greenwald; Paul J. Christos; Madhu Mazumdar; Mark M. Souweidane; Michael G. Kaplitt; Ronald G. Crystal

Late infantile neuronal ceroid lipofuscinosis (LINCL) is an autosomal recessive, neurodegenerative lysosomal storage disease affecting the CNS and is fatal by age 8 to 12 years. A total average dose of 2.5 10(12) particle units of an adeno-associated virus (AAV) serotype 2 vector expressing the human CLN2 cDNA (AAV2 CU h-CLN2) was administered to 12 locations in the CNS of 10 children with LINCL. In addition to safety parameters, a neurological rating scale (primary variable) and three quantitative magnetic resonance imaging (MRI) parameters (secondary variables) were used to compare the rate of neurological decline for 18 months in treated subjects compared with untreated subjects. Although there were no unexpected serious adverse events that were unequivocally attributable to the AAV2 CU hCLN2 vector, there were serious adverse effects, the etiology of which could not be determined under the conditions of the experiment. One subject died 49 days postsurgery after developing status epilepticus on day 14, but with no evidence of CNS inflammation. Four of the 10 subjects developed a mild, mostly transient, humoral response to the vector. Compared with control subjects, the measured rates of decline of all MRI parameters were slower, albeit the numbers were too small for statistical significance. Importantly, assessment of the neurologic rating scale, which was the primary outcome variable, demonstrated a significantly reduced rate of decline compared with control subjects. Although the trial is not matched, randomized, or blinded and lacked a contemporaneous placebo/sham control group, assessment of the primary outcome variable suggests a slowing of progression of LINCL in the treated children. On this basis, we propose that additional studies to assess the safety and efficacy of AAV-mediated gene therapy for LINCL are warranted.


The Journal of Neuroscience | 2006

Intracranial Delivery of CLN2 Reduces Brain Pathology in a Mouse Model of Classical Late Infantile Neuronal Ceroid Lipofuscinosis

Marco A. Passini; James Dodge; Jie Bu; Wendy Yang; Qi Zhao; Dolan Sondhi; Neil R. Hackett; Stephen M. Kaminsky; Qinwen Mao; Lamya S. Shihabuddin; Seng H. Cheng; David E. Sleat; Gregory R. Stewart; Beverly L. Davidson; Peter Lobel; Ronald G. Crystal

Classical late infantile neuronal ceroid lipofuscinosis (cLINCL) is a lysosomal storage disorder caused by mutations in CLN2, which encodes lysosomal tripeptidyl peptidase I (TPP1). Lack of TPP1 results in accumulation of autofluorescent storage material and curvilinear bodies in cells throughout the CNS, leading to progressive neurodegeneration and death typically in childhood. In this study, we injected adeno-associated virus (AAV) vectors containing the human CLN2 cDNA into the brains of CLN2−/− mice to determine therapeutic efficacy. AAV2CUhCLN2 or AAV5CUhCLN2 were stereotaxically injected into the motor cortex, thalamus, and cerebellum of both hemispheres at 6 weeks of age, and mice were then killed at 13 weeks after injection. Mice treated with AAV2CUhCLN2 and AAV5CUhCLN2 contained TPP1 activity at each injection tract that was equivalent to 0.5- and 2-fold that of CLN2+/+ control mice, respectively. Lysosome-associated membrane protein 1 immunostaining and confocal microscopy showed intracellular targeting of TPP1 to the lysosomal compartment. Compared with control animals, there was a marked reduction of autofluorescent storage in the AAV2CUhCLN2 and AAV5CUhCLN2 injected brain regions, as well as adjacent regions, including the striatum and hippocampus. Analysis by electron microscopy confirmed a significant decrease in pathological curvilinear bodies in cells. This study demonstrates that AAV-mediated TPP1 enzyme replacement corrects the hallmark cellular pathologies of cLINCL in the mouse model and raises the possibility of using AAV gene therapy to treat cLINCL patients.


Human Gene Therapy Methods | 2012

Long-Term Expression and Safety of Administration of AAVrh.10hCLN2 to the Brain of Rats and Nonhuman Primates for the Treatment of Late Infantile Neuronal Ceroid Lipofuscinosis

Dolan Sondhi; Linda Johnson; Keith Purpura; Sebastien Monette; Mark M. Souweidane; Michael G. Kaplitt; Barry E. Kosofsky; Kaleb Yohay; Douglas Ballon; Jonathan P. Dyke; Stephen M. Kaminksy; Neil R. Hackett; Ronald G. Crystal

Late infantile neuronal ceroid lipofuscinosis (LINCL), a fatal, lysosomal storage disorder caused by mutations in the CLN2 gene, results in a deficiency of tripeptidyl-peptidase I (TPP-I) activity in neurons. Our prior studies showed that delivery of the human CLN2 cDNA directly to the CNS, using an adeno-associated virus serotype 2 (AAV2) vector, is safe in children with LINCL. As a second-generation strategy, we have demonstrated that AAVrh.10hCLN2, a rhesus-derived AAV vector, mediates wide distribution of TPP-I through the CNS in a murine model. This study tests the hypothesis that direct administration of AAVrh.10hCLN2 to the CNS of rats and nonhuman primates at doses scalable to humans has an acceptable safety profile and mediates significant CLN2 expression in the CNS. A dose of 10(11) genome copies (GC) was administered bilaterally to the striatum of Sprague Dawley rats with sacrifice at 7 and 90 days with no significant impact except for mild vector-related histopathological changes at the site of vector administration. A dose of 1.8×10(12) GC of AAVrh.10hCLN2 was administered to the CNS of 8 African green monkeys. The vector-treated monkeys did not differ from controls in any safety parameter except for mild to moderate white matter edema and inflammation localized to the administration sites of the vector. There were no clinical sequelae to these localized findings. TPP-I activity was >2 SD over background in 31.7±8.1% of brain at 90 days. These findings establish the dose and safety profile for human clinical studies for the treatment of LINCL with AAVrh.10hCLN2.


Gene Therapy | 2005

AAV2-mediated CLN2 gene transfer to rodent and non-human primate brain results in long-term TPP-I expression compatible with therapy for LINCL

Dolan Sondhi; Daniel A. Peterson; Eustathia Lela Giannaris; C T Sanders; B S Mendez; Bishnu P. De; A B Rostkowski; Barbara C. Blanchard; Kimberly B. Bjugstad; John R. Sladek; D E Redmond; Philip L. Leopold; Stephen M. Kaminsky; Neil R. Hackett; Ronald G. Crystal

Late infantile neuronal ceroid lipofuscinosis (LINCL) is a fatal, autosomal recessive disease resulting from mutations in the CLN2 gene with consequent deficiency in its product tripeptidyl peptidase I (TPP-I). In the central nervous system (CNS), the deficiency of TPP-I results in the accumulation of proteins in lysosomes leading to a loss of neurons causing progressive neurological decline, and death by ages 10–12 years. To establish the feasibility of treating the CNS manifestations of LINCL by gene transfer, an adeno-associated virus 2 (AAV2) vector encoding the human CLN2 cDNA (AAV2CUhCLN2) was assessed for its ability to establish therapeutic levels of TPP-I in the brain. In vitro studies demonstrated that AAV2CUhCLN2 expressed CLN2 and produced biologically active TPP-I protein of which a fraction was secreted as the pro-TPP-I precursor and was taken up by nontransduced cells (ie, cross-correction). Following AAV2-mediated CLN2 delivery to the rat striatum, enzymatically active TPP-I protein was detected. By immunohistochemistry TPP-I protein was detected in striatal neurons (encompassing nearly half of the target structure) for up to 18 months. At the longer time points following striatal administration, TPP-I-positive cell bodies were also observed in the substantia nigra, frontal cerebral cortex and thalamus of the injected hemisphere, and the frontal cerebral cortex of the noninjected hemisphere. These areas of the brain contain neurons that extend axons into the striatum, suggesting that CNS circuitry may aid the distribution of the gene product. To assess the feasibility of human CNS delivery, a total of 3.6 × 1011 particle units of AAV2CUhCLN2 was administered to the CNS of African green monkeys in 12 distributed doses. Assessment at 5 and 13 weeks demonstrated widespread detection of TPP-I in neurons, but not glial cells, at all regions of injection. The distribution of TPP-I-positive cells was similar between the two time points at all injection sites. Together, these data support the development of direct CNS gene transfer using an AAV2 vector expressing the CLN2 cDNA for the CNS manifestations of LINCL.


Human Molecular Genetics | 2014

Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway

Xenia Lojewski; John F. Staropoli; Sunita Biswas-Legrand; Alexandra M. Simas; Larissa Haliw; Martin K. Selig; Scott H. Coppel; Kendrick A. Goss; Anton Petcherski; Uma Chandrachud; Steven D. Sheridan; Diane Lucente; Katherine B. Sims; James F. Gusella; Dolan Sondhi; Ronald G. Crystal; Peter Reinhardt; Jared Sterneckert; Hans R. Schöler; Stephen J. Haggarty; Alexander Storch; Andreas Hermann; Susan L. Cotman

Neuronal ceroid lipofuscinosis (NCL) comprises ∼13 genetically distinct lysosomal disorders primarily affecting the central nervous system. Here we report successful reprograming of patient fibroblasts into induced pluripotent stem cells (iPSCs) for the two most common NCL subtypes: classic late-infantile NCL, caused by TPP1(CLN2) mutation, and juvenile NCL, caused by CLN3 mutation. CLN2/TPP1- and CLN3-iPSCs displayed overlapping but distinct biochemical and morphological abnormalities within the endosomal-lysosomal system. In neuronal derivatives, further abnormalities were observed in mitochondria, Golgi and endoplasmic reticulum. While lysosomal storage was undetectable in iPSCs, progressive disease subtype-specific storage material was evident upon neural differentiation and was rescued by reintroducing the non-mutated NCL proteins. In proof-of-concept studies, we further documented differential effects of potential small molecule TPP1 activity inducers. Fenofibrate and gemfibrozil, previously reported to induce TPP1 activity in control cells, failed to increase TPP1 activity in patient iPSC-derived neural progenitor cells. Conversely, nonsense suppression by PTC124 resulted in both an increase of TPP1 activity and attenuation of neuropathology in patient iPSC-derived neural progenitor cells. This study therefore documents the high value of this powerful new set of tools for improved drug screening and for investigating early mechanisms driving NCL pathogenesis.


Experimental Neurology | 2008

Survival advantage of neonatal CNS gene transfer for late infantile neuronal ceroid lipofuscinosis

Dolan Sondhi; Daniel A. Peterson; Andrew M. Edelstein; Katrina del Fierro; Neil R. Hackett; Ronald G. Crystal

Late infantile neuronal ceroid lipofuscinosis (LINCL), a fatal autosomal recessive neurodegenerative lysosomal storage disorder of childhood, is caused by mutations in the CLN2 gene, resulting in deficiency of the protein tripeptidyl peptidase I (TPP-I). We have previously shown that direct CNS administration of AAVrh.10hCLN2 to adult CLN2 knockout mice, a serotype rh.10 adeno-associated virus expressing the wild-type CLN2 cDNA, will partially improve neurological function and survival. In this study, we explore the hypothesis that administration of AAVrh.10hCLN2 to the neonatal brain will significantly improve the results of AAVrh.10hCLN2 therapy. To assess this concept, AAVrh.10hCLN2 vector was administered directly to the CNS of CLN2 knockout mice at 2 days, 3 wk and 7 wk of age. While all treatment groups show a marked increase in total TPP-I activity over wild-type mice, neonatally treated mice displayed high levels of TPP-I activity in the CNS 1 yr after administration which was spread throughout the brain. Using behavioral markers, 2 day-treated mice demonstrate marked improvement over 3 wk, 7 wk or untreated mice. Finally, neonatal administration of AAVrh.10hCLN2 was associated with markedly enhanced survival, with a median time of death 376 days for neonatal treated mice, 277 days for 3 wk-treated mice, 168 days for 7 wk-treated mice, and 121 days for untreated mice. These data suggest that neonatal treatment offers many unique advantages, and that early detection and treatment may be essential for maximal gene therapy for childhood lysosomal storage disorders affecting the CNS.


Biochemistry | 1999

Domain interactions in protein tyrosine kinase Csk

Dolan Sondhi; Philip A. Cole

Csk (C-terminal Src kinase) is a protein tyrosine kinase that phosphorylates Src family member C-terminal tails, resulting in downregulation of Src family members. It is composed of three principal domains: an SH3 (Src homology 3) domain, an SH2 (Src homology 2) domain, and a catalytic domain. The impact of the noncatalytic domains on kinase catalysis was investigated. The Csk catalytic domain was expressed in Escherichia coli as a recombinant glutathione S-transferase-fusion protein and demonstrated to have 100-fold reduced catalytic efficiency. Production of the catalytic domain by proteolysis of full-length Csk afforded a similar rate reduction. This suggested that the reduction in catalytic efficiency of the recombinant catalytic domain was intrinsic to the sequence and not an artifact related to faulty expression. This rate reduction was similar for peptide and protein substrates and was due almost entirely to a reduced k(cat) rather than to effects on substrate K(m)s. Viscosity experiments on the catalytic fragment kinase reaction demonstrated that the chemical (phosphoryl transfer) step had a reduced rate. While the Csk SH2 domain had no intermolecular effect on the kinase activity of the Csk catalytic domain, the SH3 domain and SH3-SH2 fragment led to a partial rescue (4-5-fold) of the lost kinase activity. This rescue was not achieved with two other SH3 domains (lymphoid cell kinase, Abelson kinase). The extrapolated K(d) of interaction for the Csk catalytic domain with the Csk SH3 domain was 2.2 microM and that of the Csk catalytic domain with the Csk SH3-SH2 fragment was 8.8 microM. Taken together, these findings suggest that there is likely an intramolecular interaction between the catalytic and SH3 domains in full-length Csk that is important for efficient catalysis. By employing a Csk SH3 specific type II polyproline helix peptide and carrying out site-directed mutagenesis, it was established that the SH3 surface that interacts with the catalytic domain was distinct from the surface that binds type II polyproline helix peptides. This finding suggests a novel mode of protein-protein interaction for an SH3 domain. The implications for Csk substrate selectivity, regulation, and function are discussed.


Neurology | 2007

Neurological deterioration in late infantile neuronal ceroid lipofuscinosis

Stefan Worgall; Minal V. Kekatpure; Linda Heier; Douglas Ballon; Jonathan P. Dyke; Dikoma C. Shungu; Xiangling Mao; Barry E. Kosofsky; Michael G. Kaplitt; Mark M. Souweidane; Dolan Sondhi; Neil R. Hackett; Charleen Hollmann; Ronald G. Crystal

Background: Late infantile neuronal ceroid lipofuscinosis (LINCL) is associated with progressive degeneration of the brain and retina starting in early childhood. Methods: Thirty-two individual neurologic, ophthalmologic, and CNS imaging (MRI and MRS) assessments of 18 children with LINCL were analyzed. Disease severity was followed by two rating scales, one previously established but modified to solely assess the brain and exclude the retinal disease (modified Hamburg LINCL scale), and a newly developed scale, with expanded evaluation of the CNS impairment (Weill Cornell LINCL scale). Results: For the 18 children, the Weill Cornell scale yielded a closer correlation with both age and time since initial clinical manifestation of the disease than did the modified Hamburg scale. There were no significant differences as a function of age or time since initial manifestation of the disease in the rating scales among the most frequent CLN2 mutations (G3556C, 56% of all alleles or C3670T, 22% of all alleles). Measurements of cortical MRS N-acetyl-aspartate content, MRI ventricular, gray matter and white matter volume, and cortical apparent diffusion coefficient correlated to a variable degree with the age of the children and the time since initial clinical manifestation of the disease. All imaging measurements correlated better with the Weill Cornell CNS scale compared to the modified Hamburg LINCL scale. Conclusion: The data suggest that the Weill Cornell late infantile neuronal ceroid lipofuscinosis (LINCL) scale, together with several of the MRI measurements, may be useful in the assessment of severity and progression of LINCL and for the evaluation of novel therapeutic strategies.


Human Gene Therapy | 2012

Correction of Brain Oligodendrocytes by AAVrh.10 Intracerebral Gene Therapy in Metachromatic Leukodystrophy Mice

Françoise Piguet; Dolan Sondhi; Monique Piraud; Françoise Fouquet; Neil R. Hackett; Ornella Ahouansou; Marie-Thérèse Vanier; Ivan Bièche; Patrick Aubourg; Ronald G. Crystal; Nathalie Cartier; Caroline Sevin

Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder characterized by accumulation of sulfatides in glial cells and neurons, the result of an inherited deficiency of arylsulfatase A (ARSA; EC 3.1.6.8) and myelin degeneration in the central and peripheral nervous systems. No effective treatment is currently available for the most frequent late infantile (LI) form of MLD, which results in rapid neurological degradation and early death after the onset of clinical manifestations. To potentially arrest or reverse disease progression, ARSA enzyme must be rapidly delivered to brain oligodendrocytes of patients with LI MLD. We previously showed that brain gene therapy with adeno-associated virus serotype 5 (AAV5) driving the expression of human ARSA cDNA under the control of the murine phosphoglycerate kinase (PGK) promoter alleviated most long-term disease manifestations in MLD mice. Herein, we evaluated the short-term effects of AAVrh.10 driving the expression of human ARSA cDNA under the control of the cytomegalovirus/β-actin hybrid (CAG/cu) promoter in 8-month-old MLD mice that already show marked sulfatide accumulation and brain pathology. Within 2 months, and in contrast to results with the AAV5-PGK-ARSA vector, a single intrastriatal injection of AAVrh.10cuARSA resulted in correction of brain sulfatide storage, accumulation of specific sulfatide species in oligodendrocytes, and associated brain pathology in the injected hemisphere. Better potency of the AAVrh.10cuARSA vector was mediated by higher neuronal and oligodendrocyte transduction, axonal transport of the AAVrh.10 vector and ARSA enzyme, as well as higher CAG/cu promoter driven expression of ARSA enzyme. These results strongly support the use of AAVrh.10cuARSA vector for intracerebral gene therapy in rapidly progressing early-onset forms of MLD.


Journal of Neurosurgery | 2010

Gene therapy for late infantile neuronal ceroid lipofuscinosis: neurosurgical considerations

Mark M. Souweidane; Justin F. Fraser; Lisa M. Arkin; Dolan Sondhi; Neil R. Hackett; Stephen M. Kaminsky; Linda Heier; Barry E. Kosofsky; Stefan Worgall; Ronald G. Crystal; Michael G. Kaplitt

OBJECT The authors conducted a phase I study of late infantile neuronal ceroid lipofuscinosis using an adenoassociated virus serotype 2 (AAV2) vector containing the deficient CLN2 gene (AAV2(CU)hCLN2). The operative technique, radiographic changes, and surgical complications are presented. METHODS Ten patients with late infantile neuronal ceroid lipofuscinosis disease each underwent infusion of AAV2(CU)hCLN2 (3 x 10(12) particle units) into 12 distinct cerebral locations (2 depths/bur hole, 75 minutes/infusion, and 2 microl/minute). Innovative surgical techniques were developed to overcome several obstacles for which little or no established techniques were available. Successful infusion relied on preoperative stereotactic planning to optimize a parenchymal target and diffuse administration. Six entry sites, each having 2 depths of injections, were used to reduce operative time and enhance distribution. A low-profile rigid fixation system with 6 integrated holding arms was utilized to perform simultaneous infusions within a practical time frame. Dural sealant with generous irrigation was used to avoid CSF egress with possible subdural hemorrhage or altered stereotactic registration. RESULTS Radiographically demonstrated changes were seen in 39 (65%) of 60 injection sites, confirming localization and infusion. There were no radiographically or clinically defined complications. CONCLUSIONS The neurosurgical considerations and results of this study are presented to offer guidance and a basis for the design of future gene therapy or other clinical trials in children that utilize direct therapeutic delivery.

Collaboration


Dive into the Dolan Sondhi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge