Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dolf Weijers is active.

Publication


Featured researches published by Dolf Weijers.


Nature | 2003

Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis

Jiří Friml; Anne Vieten; Michael Sauer; Dolf Weijers; Heinz Schwarz; Thorsten Hamann; Remko Offringa; Gerd Jürgens

Axis formation occurs in plants, as in animals, during early embryogenesis. However, the underlying mechanism is not known. Here we show that the first manifestation of the apical–basal axis in plants, the asymmetric division of the zygote, produces a basal cell that transports and an apical cell that responds to the signalling molecule auxin. This apical–basal auxin activity gradient triggers the specification of apical embryo structures and is actively maintained by a novel component of auxin efflux, PIN7, which is located apically in the basal cell. Later, the developmentally regulated reversal of PIN7 and onset of PIN1 polar localization reorganize the auxin gradient for specification of the basal root pole. An analysis of pin quadruple mutants identifies PIN-dependent transport as an essential part of the mechanism for embryo axis formation. Our results indicate how the establishment of cell polarity, polar auxin efflux and local auxin response result in apical–basal axis formation of the embryo, and thus determine the axiality of the adult plant.


The Plant Cell | 2007

Cytokinins Act Directly on Lateral Root Founder Cells to Inhibit Root Initiation

Laurent Laplaze; Eva Benková; Ilda Casimiro; Lies Maes; Steffen Vanneste; Ranjan Swarup; Dolf Weijers; Vanessa Calvo; Boris Parizot; Maria Begoña Herrera-Rodriguez; Remko Offringa; Neil S. Graham; Patrick Doumas; Jiri Friml; Didier Bogusz; Tom Beeckman; Malcolm J. Bennett

In Arabidopsis thaliana, lateral roots are formed from root pericycle cells adjacent to the xylem poles. Lateral root development is regulated antagonistically by the plant hormones auxin and cytokinin. While a great deal is known about how auxin promotes lateral root development, the mechanism of cytokinin repression is still unclear. Elevating cytokinin levels was observed to disrupt lateral root initiation and the regular pattern of divisions that characterizes lateral root development in Arabidopsis. To identify the stage of lateral root development that is sensitive to cytokinins, we targeted the expression of the Agrobacterium tumefaciens cytokinin biosynthesis enzyme isopentenyltransferase to either xylem-pole pericycle cells or young lateral root primordia using GAL4-GFP enhancer trap lines. Transactivation experiments revealed that xylem-pole pericycle cells are sensitive to cytokinins, whereas young lateral root primordia are not. This effect is physiologically significant because transactivation of the Arabidopsis cytokinin degrading enzyme cytokinin oxidase 1 in lateral root founder cells results in increased lateral root formation. We observed that cytokinins perturb the expression of PIN genes in lateral root founder cells and prevent the formation of an auxin gradient that is required to pattern lateral root primordia.


The EMBO Journal | 2005

Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators

Dolf Weijers; Eva Benková; Katja E Jäger; Alexandra Schlereth; Thorsten Hamann; Marika Kientz; Jill C. Wilmoth; Jason W. Reed; Gerd Jürgens

The plant hormone auxin elicits many specific context‐dependent developmental responses. Auxin promotes degradation of Aux/IAA proteins that prevent transcription factors of the auxin response factor (ARF) family from regulating auxin‐responsive target genes. Aux/IAAs and ARFs are represented by large gene families in Arabidopsis. Here we show that stabilization of BDL/IAA12 or its sister protein IAA13 prevents MP/ARF5‐dependent embryonic root formation whereas stabilized SHY2/IAA3 interferes with seedling growth. Although both bdl and shy2‐2 proteins inhibited MP/ARF5‐dependent reporter gene activation, shy2‐2 was much less efficient than bdl to interfere with embryonic root initiation when expressed from the BDL promoter. Similarly, MP was much more efficient than ARF16 in this process. When expressed from the SHY2 promoter, both shy2‐2 and bdl inhibited cell elongation and auxin‐induced gene expression in the seedling hypocotyl. By contrast, gravitropism and auxin‐induced gene expression in the root, which were promoted by functionally redundant NPH4/ARF7 and ARF19 proteins, were inhibited by shy2‐2, but not by bdl protein. Our results suggest that auxin signals are converted into specific responses by matching pairs of coexpressed ARF and Aux/IAA proteins.


The Plant Cell | 2005

Maintenance of Embryonic Auxin Distribution for Apical-Basal Patterning by PIN-FORMED–Dependent Auxin Transport in Arabidopsis

Dolf Weijers; Michael Sauer; Olivier Meurette; Jiří Friml; Karin Ljung; Göran Sandberg; Paul J. J. Hooykaas; Remko Offringa

Molecular mechanisms of pattern formation in the plant embryo are not well understood. Recent molecular and cellular studies, in conjunction with earlier microsurgical, physiological, and genetic work, are now starting to define the outlines of a model where gradients of the signaling molecule auxin play a central role in embryo patterning. It is relatively clear how these gradients are established and interpreted, but how they are maintained is still unresolved. Here, we have studied the contributions of auxin biosynthesis, conjugation, and transport pathways to the maintenance of embryonic auxin gradients. Auxin homeostasis in the embryo was manipulated by region-specific conditional expression of indoleacetic acid-tryptophan monooxygenase or indoleacetic acid-lysine synthetase, bacterial enzymes for auxin biosynthesis or conjugation. Neither manipulation of auxin biosynthesis nor of auxin conjugation interfered with auxin gradients and patterning in the embryo. This result suggests a compensatory mechanism for buffering auxin gradients in the embryo. Chemical and genetic inhibition revealed that auxin transport activity, in particular that of the PIN-FORMED1 (PIN1) and PIN4 proteins, is a major factor in the maintenance of these gradients.


Plant Physiology | 2003

Diphtheria Toxin-Mediated Cell Ablation Reveals Interregional Communication during Arabidopsis Seed Development

Dolf Weijers; Jan-Piet van Hamburg; Erwin van Rijn; Paul J. J. Hooykaas; Remko Offringa

Fertilization of the female gametophyte in angiosperm plants initiates a process of coordinated development of embryo, endosperm, and seed coat that ensures the production of a viable seed. Mutant analysis has suggested that communication between the endosperm and the seed coat is an important determinant in this process. In addition, cell groups within the embryo, derived from the apical and from the basal cell, respectively, after zygote division, concertedly establish a functional root meristem, and cells in the apical region of the embryo are hypothesized to repress cell divisions in the basal cell-derived suspensor. The available evidence for these interregional communication events mostly relies on the analysis of mutant phenotypes in Arabidopsis. To provide independent and direct evidence for communication events, we used conditional domain-specific expression of the diphtheria toxin A chain (DTA) in developing Arabidopsis seeds. By using a collection of cell- or tissue-type-specific promoters, we show that the mGAL4:VP16/UAS two-component gene expression allows reliable spatiotemporal and conditional expression of the GFP:GUS reporter and the DTA gene in the developing embryo and endosperm. Expression of DTA in the protoderm of the embryo proper led to excessive proliferation of suspensor cells, sometimes resulting in the formation of secondary embryos. Endosperm-specific expression of DTA caused complete cessation of seed growth, followed by pattern defects in the embryo and embryo arrest. Taken together, the results presented here substantiate the evidence for and underline the importance of interregional communication in embryo and seed development and demonstrate the usefulness of conditional toxin expression as a method complementary to phenotypic analysis of developmental mutants.


Nature | 2001

Seed development (Communication arising): Early paternal gene activity in Arabidopsis

Dolf Weijers; Niko Geldner; Remko Offringa; Gerd Jürgens

Both parental genomes are expressed during embryogenesis, although the time of activation of the paternally inherited genes varies between organisms. Results reported by Vielle-Calzada et al. have suggested that delayed activation of the paternal genome seems to be the rule in plant development. We find, however, that during early embryogenesis in Arabidopsis, paternal genes are expressed and are sufficient for normal development. Our findings indicate that there is no overall maternal control of early embryogenesis, and that the contribution of the parental alleles needs to be assessed for each gene individually.


Nature | 2001

Seed development: Early paternal gene activity in Arabidopsis.

Dolf Weijers; Niko Geldner; Remko Offringa; Gerd Jürgens

Both parental genomes are expressed during embryogenesis, although the time of activation of the paternally inherited genes varies between organisms. Results reported by Vielle-Calzada et al. have suggested that delayed activation of the paternal genome seems to be the rule in plant development. We find, however, that during early embryogenesis in Arabidopsis, paternal genes are expressed and are sufficient for normal development. Our findings indicate that there is no overall maternal control of early embryogenesis, and that the contribution of the parental alleles needs to be assessed for each gene individually.


Journal of Experimental Botany | 2013

Transcriptional repression of BODENLOS by HD-ZIP transcription factor HB5 in Arabidopsis thaliana

Ive De Smet; Steffen Lau; Jasmin S. Ehrismann; Ioannis Axiotis; Martina Kolb; Marika Kientz; Dolf Weijers; Gerd Jürgens

In Arabidopsis thaliana, the phytohormone auxin is an important patterning agent during embryogenesis and post-embryonic development, exerting effects through transcriptional regulation. The main determinants of the transcriptional auxin response machinery are AUXIN RESPONSE FACTOR (ARF) transcription factors and AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) inhibitors. Although members of these two protein families are major developmental regulators, the transcriptional regulation of the genes encoding them has not been well explored. For example, apart from auxin-linked regulatory inputs, factors regulating the expression of the AUX/IAA BODENLOS (BDL)/IAA12 are not known. Here, it was shown that the HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP) transcription factor HOMEOBOX PROTEIN 5 (HB5) negatively regulates BDL expression, which may contribute to the spatial control of BDL expression. As such, HB5 and probably other class I HD-ZIP proteins, appear to modulate BDL-dependent auxin response.


Plant Journal | 2016

Auxin responsiveness of the MONOPTEROS-BODENLOS module in primary root initiation critically depends on the nuclear import kinetics of the Aux/IAA inhibitor BODENLOS

Ole Herud; Dolf Weijers; Steffen Lau; Gerd Jürgens

Primary root formation in early embryogenesis of Arabidopsis thaliana is initiated with the specification of a single cell called hypophysis. This initial step requires the auxin-dependent release of the transcription factor MONOPTEROS (MP, also known as ARF5) from its inhibition by the Aux/IAA protein BODENLOS (BDL, also known as IAA12). Auxin-insensitive bdl mutant embryos and mp loss-of-function embryos fail to specify the hypophysis, giving rise to rootless seedlings. A suppressor screen of rootless bdl mutant seedlings yielded a mutation in the nuclear import receptor IMPORTIN-ALPHA 6 (IMPα6) that promoted primary root formation through rescue of the embryonic hypophysis defects, without causing additional phenotypic changes. Aux/IAA proteins are continually synthesized and degraded, which is essential for rapid transcriptional responses to changing auxin concentrations. Nuclear translocation of bdl:3×GFP was slowed down in impα6 mutants as measured by fluorescence recovery after photobleaching (FRAP) analysis, which correlated with the reduced inhibition of MP by bdl in transient expression assays in impα6 knock-down protoplasts. The MP-BDL module acts like an auxin-triggered genetic switch because MP activates its own expression as well as the expression of its inhibitor BDL. Using an established simulation model, we determined that the reduced nuclear translocation rate of BDL in impα6 mutant embryos rendered the auxin-triggered switch unstable, impairing the fast response to changes in auxin concentration. Our results suggest that the instability of the inhibitor BDL necessitates a fast nuclear uptake in order to reach the critical threshold level required for auxin responsiveness of the MP-BDL module in primary root initiation.


Science | 2004

A PINOID-Dependent Binary Switch in Apical-Basal PIN Polar Targeting Directs Auxin Efflux

Jiří Friml; Xiong Yang; Marta Michniewicz; Dolf Weijers; Ab Quint; Olaf Tietz; René Benjamins; Pieter B.F. Ouwerkerk; Karin Ljung; Göran Sandberg; Paul J. J. Hooykaas; Klaus Palme; Remko Offringa

Collaboration


Dive into the Dolf Weijers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiří Friml

Institute of Science and Technology Austria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Benková

Institute of Science and Technology Austria

View shared research outputs
Researchain Logo
Decentralizing Knowledge