Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dolly Mehta is active.

Publication


Featured researches published by Dolly Mehta.


Annals of the New York Academy of Sciences | 2008

Regulation of Endothelial Junctional Permeability

Emily Vandenbroucke; Dolly Mehta; Richard D. Minshall; Asrar B. Malik

The endothelium is a semi‐permeable barrier that regulates the flux of liquid and solutes, including plasma proteins, between the blood and surrounding tissue. The permeability of the vascular barrier can be modified in response to specific stimuli acting on endothelial cells. Transport across the endothelium can occur via two different pathways: through the endothelial cell (transcellular) or between adjacent cells, through interendothelial junctions (paracellular). This review focuses on the regulation of the paracellular pathway. The paracellular pathway is composed of adhesive junctions between endothelial cells, both tight junctions and adherens junctions. The actin cytoskeleton is bound to each junction and controls the integrity of each through actin remodeling. These interendothelial junctions can be disassembled or assembled to either increase or decrease paracellular permeability. Mediators, such as thrombin, TNF‐α, and LPS, stimulate their respective receptor on endothelial cells to initiate signaling that increases cytosolic Ca2+ and activates myosin light chain kinase (MLCK), as well as monomeric GTPases RhoA, Rac1, and Cdc42. Ca2+ activation of MLCK and RhoA disrupts junctions, whereas Rac1 and Cdc42 promote junctional assembly. Increased endothelial permeability can be reversed with “barrier stabilizing agents,” such as sphingosine‐1‐phosphate and cyclic adenosine monophosphate (cAMP). This review provides an overview of the mechanisms that regulate paracellular permeability.


Circulation Research | 2002

Impairment of Store-Operated Ca2+ Entry in TRPC4−/− Mice Interferes With Increase in Lung Microvascular Permeability

Chinnaswamy Tiruppathi; Marc Freichel; Stephen M. Vogel; Biman C. Paria; Dolly Mehta; Veit Flockerzi; Asrar B. Malik

We investigated the possibility that the TRPC gene family of putative store-operated Ca2+ entry channels contributes to the increase in microvascular endothelial permeability by prolonging the rise in intracellular Ca2+ signaling. Studies were made in wild-type (wt) and TRPC4 knockout (TRPC4−/−) mice and lung vascular endothelial cells (LECs) isolated from these animals. RT-PCR showed expression of TRPC1, TRPC3, TRPC4, and TRPC6 mRNA in wt LECs, but TRPC4 mRNA expression was not detected in TRPC4−/− LECs. We studied the response to thrombin because it is known to increase endothelial permeability by the activation of G protein-coupled proteinase-activated receptor-1 (PAR-1). In wt LECs, thrombin or PAR-1 agonist peptide (TFLLRNPNDK-NH2) resulted in a prolonged Ca2+ transient secondary to influx of Ca2+. Ca2+ influx activated by thrombin was blocked by La3+ (1 &mgr;mol/L). In TRPC4−/− LECs, thrombin or TFLLRNPNDK-NH2 produced a similar initial increase of intracellular Ca2+ secondary to Ca2+ store depletion, but Ca2+ influx induced by these agonists was drastically reduced. The defect in Ca2+ influx in TRPC4−/− endothelial cells was associated with lack of thrombin-induced actin-stress fiber formation and a reduced endothelial cell retraction response. In isolated-perfused mouse lungs, the PAR-1 agonist peptide increased microvessel filtration coefficient (Kf,c), a measure of vascular permeability, by a factor of 2.8 in wt and 1.4 in TRPC4−/−; La3+ (1 &mgr;mol/L) addition to wt lung perfusate reduced the agonist effect to that observed in TRPC4−/−. These results show that TRPC4-dependent Ca2+ entry in mouse LECs is a key determinant of increased microvascular permeability.


Journal of Biological Chemistry | 2003

RhoA Interaction with Inositol 1,4,5-Trisphosphate Receptor and Transient Receptor Potential Channel-1 Regulates Ca2+ Entry ROLE IN SIGNALING INCREASED ENDOTHELIAL PERMEABILITY

Dolly Mehta; Gias U. Ahmmed; Biman C. Paria; Michael Holinstat; Tatyana A. Voyno-Yasenetskaya; Chinnaswamy Tiruppathi; Richard D. Minshall; Asrar B. Malik

We tested the hypothesis that RhoA, a monomeric GTP-binding protein, induces association of inositol trisphosphate receptor (IP3R) with transient receptor potential channel (TRPC1), and thereby activates store depletion-induced Ca2+ entry in endothelial cells. We showed that RhoA upon activation with thrombin associated with both IP3R and TRPC1. Thrombin also induced translocation of a complex consisting of Rho, IP3R, and TRPC1 to the plasma membrane. IP3R and TRPC1 translocation and association required Rho activation because the response was not seen in C3 transferase (C3)-treated cells. Rho function inhibition using Rho dominant-negative mutant or C3 dampened Ca2+ entry regardless of whether Ca2+ stores were emptied by thrombin, thapsigargin, or inositol trisphosphate. Rho-induced association of IP3R with TRPC1 was dependent on actin filament polymerization because latrunculin (which inhibits actin polymerization) prevented both the association and Ca2+ entry. We also showed that thrombin produced a sustained Rho-dependent increase in cytosolic Ca2+ concentration [Ca2+]i in endothelial cells overexpressing TRPC1. We further showed that Rho-activated Ca2+ entry via TRPC1 is important in the mechanism of the thrombin-induced increase in endothelial permeability. In summary, Rho activation signals interaction of IP3R with TRPC1 at the plasma membrane of endothelial cells, and triggers Ca2+ entry following store depletion and the resultant increase in endothelial permeability.


Journal of Biological Chemistry | 2007

Gαq-TRPC6-mediated Ca2+ Entry Induces RhoA Activation and Resultant Endothelial Cell Shape Change in Response to Thrombin

Itender Singh; Nebojsa Knezevic; Gias U. Ahmmed; Vidisha Kini; Asrar B. Malik; Dolly Mehta

RhoA activation and increased intracellular Ca2+ concentration mediated by the activation of transient receptor potential channels (TRPC) both contribute to the thrombin-induced increase in endothelial cell contraction, cell shape change, and consequently to the mechanism of increased endothelial permeability. Herein, we addressed the possibility that TRPC signals RhoA activation and thereby contributes in actinomyosin-mediated endothelial cell contraction and increased endothelial permeability. Transduction of a constitutively active Gαq mutant in human pulmonary arterial endothelial cells induced RhoA activity. Preventing the increase in intracellular Ca2+ concentration by the inhibitor of Gαq or phospholipase C and the Ca2+ chelator, BAPTA-AM, abrogated thrombin-induced RhoA activation. Depletion of extracellular Ca2+ also inhibited RhoA activation, indicating the requirement of Ca2+ entry in the response. RhoA activation could not be ascribed to storeoperated Ca2+ (SOC) entry because SOC entry induced with thapsigargin or small interfering RNA-mediated inhibition of TRPC1 expression, the predominant SOC channel in these endothelial cells, failed to alter RhoA activity. However, activation of receptor-operated Ca2+ entry by oleoyl-2-acetyl-sn-glycerol, the membrane permeable analogue of the Gαq-phospholipase C product diacylglycerol, induced RhoA activity. Receptor-operated Ca2+ activation was mediated by TRPC6 because small interfering RNA-induced TRPC6 knockdown significantly reduced Ca2+ entry. TRPC6 knockdown also prevented RhoA activation, myosin light chain phosphorylation, and actin stress fiber formation as well as inter-endothelial junctional gap formation in response to either oleoyl-2-acetyl-sn-glycerol or thrombin. TRPC6-mediated RhoA activity was shown to be dependent on PKCα activation. Our results demonstrate that Gαq activation of TRPC6 signals the activation of PKCα, and thereby induces RhoA activity and endothelial cell contraction.


Circulation Research | 2005

Angiopoietin-1 Opposes VEGF-Induced Increase in Endothelial Permeability by Inhibiting TRPC1-Dependent Ca2 Influx

David H. Jho; Dolly Mehta; Gias U. Ahmmed; Xiao Pei Gao; Chinnaswamy Tiruppathi; Michael Broman; Asrar B. Malik

Angiopoietin-1 (Ang1) exerts a vascular endothelial barrier protective effect by blocking the action of permeability-increasing mediators such as vascular endothelial growth factor (VEGF) through unclear mechanisms. Because VEGF may signal endothelial hyperpermeability through the phospholipase C (PLC)-IP3 pathway that activates extracellular Ca2+ entry via the plasmalemmal store-operated channel transient receptor potential canonical-1 (TRPC1), we addressed the possibility that Ang1 acts by inhibiting this Ca2+ entry mechanism in endothelial cells. Studies in endothelial cell monolayers demonstrated that Ang1 inhibited the VEGF-induced Ca2+ influx and increase in endothelial permeability in a concentration-dependent manner. Inhibitors of the PLC-IP3 Ca2+ signaling pathway prevented the VEGF-induced Ca2+ influx and hyperpermeability similar to the inhibitory effects seen with Ang1. Ang1 had no effect on PLC phosphorylation and IP3 production, thus its permeability-decreasing effect could not be ascribed to inhibition of PLC activation. However, Ang1 interfered with downstream IP3-dependent plasmalemmal Ca2+ entry without affecting the release of intracellular Ca2+ stores. Anti-TRPC1 antibody inhibited the VEGF-induced Ca2+ entry and the increased endothelial permeability. TRPC1 overexpression in endothelial cells augmented the VEGF-induced Ca2+ entry, and application of Ang1 opposed this effect. In immunoprecipitation studies, Ang1 inhibited the association of IP3 receptor (IP3R) and TRPC1, consistent with the coupling hypothesis of Ca2+ entry. These results demonstrate that Ang1 blocks the TRPC1-dependent Ca2+ influx induced by VEGF by interfering with the interaction of IP3R with TRPC1, and thereby abrogates the increase in endothelial permeability.


Science Signaling | 2007

Dual regulation of endothelial junctional permeability.

Yulia Komarova; Dolly Mehta; Asrar B. Malik

G protein–coupled receptors (GPCRs) of endothelial cells transmit diverse intracellular signals that regulate adherens junction (AJ) permeability. Increased endothelial permeability contributes to pathological processes such as inflammation, atherogenesis, and acute lung injury. Thrombin, a serine protease, and sphingosine-1-phosphate (S1P), a bioactive lipid, regulate endothelial barrier function by activating their respective GPCRs—the protease-activated receptor PAR1 and the S1P receptor S1P1—which initiate intracellular signals that regulate AJ integrity and cytoskeleton organization. The distinct patterns of PAR1 and S1P1 signal transduction underlie the functional antagonism between thrombin and S1P. Evidence points to a role for activation of the S1P1 receptor that is induced by PAR1-mediated signaling in the mechanism of AJ reannealing and endothelial barrier repair. Understanding the molecular basis of AJ integrity in the context of inflammation is important in developing novel anti-inflammatory therapeutics. This Review provides a working model for molecular mechanisms for the dual regulation of endothelial barrier function. The endothelial monolayer maintains tissue fluid homeostasis by restricting transudation of fluid from intravascular space to underlying tissue. This Review, with two figures and 107 references, describes how proinflammatory stimuli regulate endothelial barrier function. The focus is on G protein–coupled receptor (GPCR)–mediated signaling events and how these signals control adherens junction integrity and thereby endothelial barrier function. We discuss the functional antagonism between thrombin and sphingosine-1-phosphate in generating signaling cascades that lead to barrier dysfunction or enhancement. Cross-talk between these signaling pathways plays a key role in mediating the endothelial barrier set point.


Circulation Research | 2008

Role of Protein Tyrosine Phosphatase 1B in Vascular Endothelial Growth Factor Signaling and Cell–Cell Adhesions in Endothelial Cells

Yoshimasa Nakamura; Nikolay Patrushev; Hyoe Inomata; Dolly Mehta; Norifumi Urao; Ha Won Kim; Masooma Razvi; Vidisha Kini; Kalyankar Mahadev; Barry J. Goldstein; Ronald D. McKinney; Tohru Fukai; Masuko Ushio-Fukai

Vascular endothelial growth factor (VEGF) binding induces phosphorylation of VEGF receptor (VEGFR)2 in tyrosine, which is followed by disruption of VE-cadherin–mediated cell–cell contacts of endothelial cells (ECs), thereby stimulating EC proliferation and migration to promote angiogenesis. Tyrosine phosphorylation events are controlled by the balance of activation of protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Little is known about the role of endogenous PTPs in VEGF signaling in ECs. In this study, we found that PTP1B expression and activity are markedly increased in mice hindlimb ischemia model of angiogenesis. In ECs, overexpression of PTP1B, but not catalytically inactive mutant PTP1B-C/S, inhibits VEGF-induced phosphorylation of VEGFR2 and extracellular signal-regulated kinase 1/2, as well as EC proliferation, whereas knockdown of PTP1B by small interfering RNA enhances these responses, suggesting that PTP1B negatively regulates VEGFR2 signaling in ECs. VEGF-induced p38 mitogen-activated protein kinase phosphorylation and EC migration are not affected by PTP1B overexpression or knockdown. In vivo dephosphorylation and cotransfection assays reveal that PTP1B binds to VEGFR2 cytoplasmic domain in vivo and directly dephosphorylates activated VEGFR2 immunoprecipitates from human umbilical vein endothelial cells. Overexpression of PTP1B stabilizes VE-cadherin–mediated cell–cell adhesions by reducing VE-cadherin tyrosine phosphorylation, whereas PTP1B small interfering RNA causes opposite effects with increasing endothelial permeability, as measured by transendothelial electric resistance. In summary, PTP1B negatively regulates VEGFR2 receptor activation via binding to the VEGFR2, as well as stabilizes cell–cell adhesions through reducing tyrosine phosphorylation of VE-cadherin. Induction of PTP1B by hindlimb ischemia may represent an important counterregulatory mechanism that blunts overactivation of VEGFR2 during angiogenesis in vivo.


Journal of Biological Chemistry | 2006

Suppression of RhoA activity by focal adhesion kinase-induced activation of p190RhoGAP: Role in regulation of endothelial permeability

Michael Holinstat; Nebojsa Knezevic; Michael Broman; Allen M. Samarel; Asrar B. Malik; Dolly Mehta

The interaction of endothelial cells with extracellular matrix proteins at focal adhesions sites contributes to the integrity of vascular endothelial barrier. Although focal adhesion kinase (FAK) activation is required for the recovery of the barrier function after increased endothelial junctional permeability, the basis for the recovery remains unclear. We tested the hypothesis that FAK activates p190RhoGAP and, thus, negatively regulates RhoA activity and promotes endothelial barrier restoration in response to the permeability-increasing mediator thrombin. We observed that thrombin caused a transient activation of RhoA but a more prolonged FAK activation temporally coupled to the recovery of barrier function. Thrombin also induced tyrosine phosphorylation of p190RhoGAP, which coincided with decrease in RhoA activity. We further showed that FAK was associated with p190RhoGAP, and importantly, recombinant FAK phosphorylated p190RhoGAP in vitro. Inhibition of FAK by adenoviral expression of FRNK (a dominant negative FAK construct) in monolayers prevented p190RhoGAP phosphorylation, increased RhoA activity, induced actin stress fiber formation, and produced an irreversible increase in endothelial permeability in response to thrombin. We also observed that p190RhoGAP was unable to attenuate RhoA activation in the absence of FAK activation induced by FRNK. The inhibition of RhoA by the C3 toxin (Clostridium botulinum toxin) restored endothelial barrier function in the FRNK-expressing cells. These findings in endothelial cells were recapitulated in the lung microcirculation in which FRNK expression in microvessel endothelia increased vascular permeability. Our studies demonstrate that FAK-induced down-modulation of RhoA activity via p190RhoGAP is a crucial step in signaling endothelial barrier restoration after increased endothelial permeability.


Circulation Research | 2008

Activation of Sphingosine Kinase-1 Reverses the Increase in Lung Vascular Permeability Through Sphingosine-1-Phosphate Receptor Signaling in Endothelial Cells

Mohammad Tauseef; Vidisha Kini; Nebojsa Knezevic; Melissa Brannan; Ram Ramchandaran; Henrik Fyrst; Julie D. Saba; Stephen M. Vogel; Asrar B. Malik; Dolly Mehta

The lipid mediator sphingosine-1-phosphate (S1P), the product of sphingosine kinase (SPHK)-induced phosphorylation of sphingosine, is known to stabilize interendothelial junctions and prevent microvessel leakiness. Here, we investigated the role of SPHK1 activation in regulating the increase in pulmonary microvessel permeability induced by challenge of mice with lipopolysaccharide or thrombin ligation of protease-activating receptor (PAR)-1. Both lipopolysaccharide and thrombin increased mouse lung microvascular permeability and resulted in a delayed activation of SPHK1 that was coupled to the onset of restoration of permeability. In contrast to wild-type mice, Sphk1−/− mice showed markedly enhanced pulmonary edema formation in response to lipopolysaccharide and PAR-1 activation. Using endothelial cells challenged with thrombin concentration (50 nmol/L) that elicited a transient but reversible increase in endothelial permeability, we observed that increased SPHK1 activity and decreased intracellular S1P concentration preceded the onset of barrier recovery. Thus, we tested the hypothesis that released S1P in a paracrine manner activates its receptor S1P1 to restore the endothelial barrier. Knockdown of SPHK1 decreased basal S1P production and Rac1 activity but increased basal endothelial permeability. In SPHK1-depleted cells, PAR-1 activation failed to induce Rac1 activation but augmented RhoA activation and endothelial hyperpermeability response. Knockdown of S1P1 receptor in endothelial cells also enhanced the increase in endothelial permeability following PAR-1 activation. S1P treatment of Sphk1−/− lungs or SPHK1-deficient endothelial cells restored endothelial barrier function. Our results suggest the crucial role of activation of the SPHK1→S1P→S1P1 signaling pathway in response to inflammatory mediators in endothelial cells in regulating endothelial barrier homeostasis.


Journal of Biological Chemistry | 2005

Sphingosine 1-Phosphate-induced Mobilization of Intracellular Ca2+ Mediates Rac Activation and Adherens Junction Assembly in Endothelial Cells

Dolly Mehta; Maria Konstantoulaki; Gias U. Ahmmed; Asrar B. Malik

Sphingosine 1-phosphate (S1P) ligation of endothelial differentiation gene-1 receptor coupled to the heterotrimeric G protein, Gi, promotes endothelial barrier strengthening via Rac-dependent assembly of adherens junctions (AJs). However, the mechanism of Rac activation induced by S1P stimulation remains unclear. In live endothelial cells expressing GFP-Rac, we observed that S1P induced the translocation of Rac to intercellular junctions, resulting in junctional sealing. We investigated the role of intracellular Ca2+ in signaling Rac activation and the enhancement of endothelial barrier function. We observed that S1P activated the release of Ca2+ from endoplasmic reticulum stores, and subsequent Ca2+ entry via lanthanum-sensitive store-operated Ca2+ channels (SOC) after store depletion. Inhibition of Gi, phospholipase C, or inositol trisphosphate receptor prevented the S1P-activated increase in intracellular Ca2+ as well as Rac activation, AJ assembly, and enhancement of endothelial barrier. Chelation of intracellular Ca2+ with BAPTA blocked S1P-induced Rac activation, indicating the requirement for Ca2+ in the response. Inhibition of SOC by lanthanum or transient receptor potential channel 1 (TRPC1), a SOC constituent, by TRPC1 antibody, failed to prevent S1P-induced Rac translocation to junctions and AJ assembly. Thus, our results demonstrate that S1P promotes endothelial junctional integrity by activating the release of endoplasmic reticulum-Ca2+, which induces Rac activation and promotes AJ annealing.

Collaboration


Dive into the Dolly Mehta's collaboration.

Top Co-Authors

Avatar

Asrar B. Malik

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Mohammad Tauseef

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Nebojsa Knezevic

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Stephen M. Vogel

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Vidisha Kini

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Chinnaswamy Tiruppathi

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Yulia Komarova

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Sukriti Sukriti

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Tracy Thennes

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge