Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dolly N. Kothawala is active.

Publication


Featured researches published by Dolly N. Kothawala.


Nature Communications | 2014

Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology

Anne M. Kellerman; Thorsten Dittmar; Dolly N. Kothawala; Lars J. Tranvik

Despite the small continental coverage of lakes, they are hotspots of carbon cycling, largely due to the processing of terrestrially derived dissolved organic matter (DOM). As DOM is an amalgam of heterogeneous compounds comprising gradients of microbial and physicochemical reactivity, the factors influencing DOM processing at the molecular level and the resulting patterns in DOM composition are not well understood. Here we show, using ultrahigh-resolution mass spectrometry to unambiguously identify 4,032 molecular formulae in 120 lakes across Sweden, that the molecular composition of DOM is shaped by precipitation, water residence time and temperature. Terrestrially derived DOM is selectively lost as residence time increases, with warmer temperatures enhancing the production of nitrogen-containing compounds. Using biodiversity concepts, we show that the molecular diversity of DOM, or chemodiversity, increases with DOM and nutrient concentrations. The observed molecular-level patterns indicate that terrestrially derived DOM will become more prevalent in lakes as climate gets wetter.


PLOS ONE | 2013

In-Lake Processes Offset Increased Terrestrial Inputs of Dissolved Organic Carbon and Color to Lakes

Stephan J. Köhler; Dolly N. Kothawala; Martyn N. Futter; Olof Liungman; Lars J. Tranvik

Increased color in surface waters, or browning, can alter lake ecological function, lake thermal stratification and pose difficulties for drinking water treatment. Mechanisms suggested to cause browning include increased dissolved organic carbon (DOC) and iron concentrations, as well as a shift to more colored DOC. While browning of surface waters is widespread and well documented, little is known about why some lakes resist it. Here, we present a comprehensive study of Mälaren, the third largest lake in Sweden. In Mälaren, the vast majority of water and DOC enters a western lake basin, and after approximately 2.8 years, drains from an eastern basin. Despite 40 years of increased terrestrial inputs of colored substances to western lake basins, the eastern basin has resisted browning over this time period. Here we find the half-life of iron was far shorter (0.6 years) than colored organic matter (A420 ; 1.7 years) and DOC as a whole (6.1 years). We found changes in filtered iron concentrations relate strongly to the observed loss of color in the western basins. In addition, we observed a substantial shift from colored DOC of terrestrial origin, to less colored autochthonous sources, with a substantial decrease in aromaticity (-17%) across the lake. We suggest that rapid losses of iron and colored DOC caused the limited browning observed in eastern lake basins. Across a wider dataset of 69 Swedish lakes, we observed greatest browning in acidic lakes with shorter retention times (< 1.5 years). These findings suggest that water residence time, along with iron, pH and colored DOC may be of central importance when modeling and projecting changes in brownification on broader spatial scales.


Science of The Total Environment | 2012

Selective loss and preservation of lake water dissolved organic matter fluorescence during long-term dark incubations

Dolly N. Kothawala; Eddie von Wachenfeldt; Birgit Koehler; Lars J. Tranvik

The biogeochemical processing of dissolved organic matter (DOM) in inland waters is inherently related to its molecular structure and ecological function. Controlled bioassays are a valuable tool to analyze these relationships, but are seldom conducted and compared at temporal scales that typically prevail in natural inland waters. Here we incubated water from six boreal lakes in the dark and examined changes to the initial fluorescence and absorbance after 3.5 years. We identified five fluorescence components with parallel factor (PARAFAC) analysis (C(C,) C(M), C(A), C(X) and C(T)) and found a consistent change in the relative intensity of two dominant PARAFAC components (increase in C(A):C(C), corresponding to Peak A:Peak C), commonly found in lake water, that represent terrestrially-derived DOM. Surprisingly, we only found minor changes to specific absorbance (SUVA), and did not find any changes to other spectral indexes including the fluorescence index, humification index and freshness index. By incorporating lakes spanning a wide range of initial total organic carbon concentrations (3.7 to 32.5 mg L(-1)), water residence times, and spectral characteristics (e.g. SUVA 1.13 to 3.77 L·mg C(-1)·m(-1)), we found that the relative intensities of two humic-like peaks were the most revealing of changes to DOM structure during dark incubations. We also verified that inner filter effects were adequately corrected within the concentration range of incubated samples. Thus, the processing of DOM under dark conditions, including microbial decomposition and flocculation, may have a greater influence on the humic-like peaks, particularly C(C) (Peak C), with negligible changes to more commonly used spectral indexes.


Journal of Geophysical Research | 2015

The relative influence of land cover, hydrology, and in-stream processing on the composition of dissolved organic matter in boreal streams

Dolly N. Kothawala; Xing Ji; Hjalmar Laudon; Anneli Ågren; Martyn N. Futter; Stephan J. Köhler; Lars J. Tranvik

Low-order boreal streams are particularly sensitive interfaces where dissolved organic matter (DOM) is transported from soils to inland waters. Disentangling the relative influence of key environmental factors suspected to influence stream water DOM composition is highly relevant to predicting the reactivity and fate of terrestrial DOM entering inland waters. Here we examined changes to DOM composition using absorbance and fluorescence, from 17 boreal streams ranging from first to fourth orders, over 14 months, including the rarely studied winter season, and two snowmelt periods (n = 836). We also analyzed soil pore water samples from three forest soil lysimeters to a depth of 70 cm (n = 60). Of five identified fluorescing parallel factor analysis components, two (C4 and C5) expressed a clear mire wetland or forest signature, providing distinct molecular markers of dominant land cover. In fact, land cover alone explained 49% of the variability in DOM composition. In contrast, seasonal fluctuations in hydrology only contributed to minor shifts (8%) in the composition of stream water DOM, while in-stream transformations to DOM composition were undetectable. These findings suggest that low-order boreal streams act as a passive pipe, since in-stream processing of DOM is restricted by short water residence times (6 h to 2 days). In addition, we demonstrated the sensitivity of optical approaches to distinguish between key terrestrial sources of DOM in the boreal landscape. By distinguishing the proportional leverage of key environmental controls on headwater stream DOM composition, we are better equipped to predict where and when key DOM transformations occur in the aquatic conduit.


Journal of Geophysical Research | 2014

Hourly, daily, and seasonal variability in the absorption spectra of chromophoric dissolved organic matter in a eutrophic, humic lake

Roger A. Müller; Dolly N. Kothawala; Eva Podgrajsek; Erik Sahlée; Birgit Koehler; Lars J. Tranvik; Gesa A. Weyhenmeyer

The short-term (hourly and daily) variation in chromophoric dissolved organic matter (CDOM) in lakes is largely unknown. We assessed the spectral characteristics of light absorption by CDOM in a eutrophic, humic shallow mixed lake of temperate Sweden at a high-frequency (30 min) interval and during a full growing season (May to October). Physical time series, such as solar radiation, temperature, wind, and partial pressures of carbon dioxide in water and air, were measured synchronously. We identified a strong radiation-induced summer CDOM loss (25 to 50%) that developed over 4 months, which was accompanied by strong changes in CDOM absorption spectral shape. The magnitude of the CDOM loss exceeded subhourly to daily variability by an order of magnitude. Applying Fourier analysis, we demonstrate that variation in CDOM remained largely unaffected by rapid shifts in weather, and no apparent response to in-lake dissolved organic carbon production was found. In autumn, CDOM occasionally showed variation at hourly to daily time scales, reaching a maximum daily coefficient of variation of 15%. We suggest that lake-internal effects on CDOM are quenched in humic lake waters by dominating effects associated with imported CDOM and solar exposure. Since humic lake waters belong to one of the most abundant lake types on Earth, our results have important implications for the understanding of global CDOM cycling.


Journal of Geophysical Research | 2017

Preferential sequestration of terrestrial organic matter in boreal lake sediments

François Guillemette; Eddie von Wachenfeldt; Dolly N. Kothawala; David Bastviken; Lars J. Tranvik

The molecular composition and origin has recently been demonstrated to play a critical role in the persistence of organic matter in lake water, but it is unclear to what degree chemical attributes and sources may also control settling and burial of organic matter in lake sediments. Here we compared the annual contribution of allochthonous and autochthonous sources to the organic matter settling in the water column and present in the sediments of 12 boreal lakes. We used the fluorescence properties and elemental composition of the organic matter to trace its origin and found a consistent pattern of increasing contribution of terrestrial compounds in the sediments as compared to the settling matter, with an annual average allochthony of ~87% and ~57%, respectively. Seasonal data revealed a predominance of in-lake-produced compounds sinking in the water column in summer. Yet only a slight concurrent decrease in the contribution of terrestrial C to lake sediments was observed during the same period, and sediment allochthony increased again to high levels in autumn. Our results reveal a preferential preservation of allochthonous matter in the sediments and highlight the role of lakes as sequesters of organic carbon primarily originating from the surrounding landscape.


Archive | 2013

Sequestration and Loss of Organic Carbon in Inland Waters: From Microscale to Global Scale

Lars J. Tranvik; Cristian Gudasz; Birgit Koehler; Dolly N. Kothawala

Dissolved organic carbon (DOC) in inland waters plays a substantial role in the global carbon cycle and thus potentially affects climate as well. DOC is a heterogeneous mixture of decomposition products, but the character and reactivity of DOC is not well understood and neither is what controls the molecular composition of this dynamic community of compounds. Furthermore, there is growing evidence that DOC, upon degradation by microbial and other processes, contributes substantially to evasion of carbon dioxide and methane to the atmosphere, but is also an important precursor of carbon that is buried in sediments. This presentation is an overview of the dynamics and fluxes of carbon involving DOC, from microscale to global scale.


Water Research | 2018

The interplay between total mercury, methylmercury and dissolved organic matter in fluvial systems: A latitudinal study across Europe

Andrea G. Bravo; Dolly N. Kothawala; Katrin Attermeyer; Emmanuel Tessier; Pascal Bodmer; José L. J. Ledesma; Joachim Audet; Joan Pere Casas-Ruiz; Núria Catalán; Sophie Cauvy-Fraunié; Miriam Colls; Anne Deininger; Vesela Vasileva Evtimova; Jérémy A. Fonvielle; Thomas Fuß; Peter Gilbert; Sonia Herrero Ortega; Liu Liu; Clara Mendoza-Lera; Juliana Monteiro; Jordi-René Mor; Magdalena Nagler; Georg Niedrist; Anna C. Nydahl; Ada Pastor; Josephine Pegg; Catherine Gutmann Roberts; Francesca Pilotto; Ana Portela; Clara Romero González-Quijano

Large-scale studies are needed to identify the drivers of total mercury (THg) and monomethyl-mercury (MeHg) concentrations in aquatic ecosystems. Studies attempting to link dissolved organic matter (DOM) to levels of THg or MeHg are few and geographically constrained. Additionally, stream and river systems have been understudied as compared to lakes. Hence, the aim of this study was to examine the influence of DOM concentration and composition, morphological descriptors, land uses and water chemistry on THg and MeHg concentrations and the percentage of THg as MeHg (%MeHg) in 29 streams across Europe spanning from 41°N to 64 °N. THg concentrations (0.06-2.78 ng L-1) were highest in streams characterized by DOM with a high terrestrial soil signature and low nutrient content. MeHg concentrations (7.8-159 pg L-1) varied non-systematically across systems. Relationships between DOM bulk characteristics and THg and MeHg suggest that while soil derived DOM inputs control THg concentrations, autochthonous DOM (aquatically produced) and the availability of electron acceptors for Hg methylating microorganisms (e.g. sulfate) drive %MeHg and potentially MeHg concentration. Overall, these results highlight the large spatial variability in THg and MeHg concentrations at the European scale, and underscore the importance of DOM composition on mercury cycling in fluvial systems.


Science of The Total Environment | 2019

Selective removal of dissolved organic matter affects the production and speciation of disinfection byproducts

Clayton J. Williams; Dan Conrad; Dolly N. Kothawala; Helen M. Baulch

The heterogeneity of dissolved organic matter (DOM) in natural and human impacted waters and the variety of drinking water treatment processes employed has made a mechanistic understanding of disinfection byproduct (DBP) formation challenging. In this study, we examined the formation of the regulated DBPs (Trichloromethanes, THM, and Haloacetic acids, HAA) during full-scale water treatment operations both with prechlorination treatment (normal operations for the drinking water plant) and without (altered operations); followed by coagulation, flocculation, filtration, and chlorination. The source water DOM concentration ranged 6.4 to 7.3 mg-C/L. DOM composition was moderately humic and degraded with a mix of microbial- and terrestrial-like characteristics. Removal of raw water prechlorination caused an average reduction in total THM and HAA concentrations of 52.7% and 40.0%, respectively, with the greater reduction noted for chlorinated-DBPs rather than brominated-DBPs. Prechlorination treatment resulted in a higher relative production of Cl3CH and BrCl2CH associated with aromatic, humic, and terrestrial-like DOM. Without prechlorination, the DBP pool had higher proportions of brominated-DBPs (Br3CH, Br2ClCH, Br2CHCOOH, BrClCHCOOH, and BrCH2COOH) associated with microbial-like, processed humic-like, and protein-like DOM. These observed patterns could not be explained by chloride demand and DOM concentration, indicating that DOM composition played an important role in DBP formation.


Water Resources Research | 2018

Stream Dissolved Organic Matter Composition Reflects the Riparian Zone, Not Upslope Soils in Boreal Forest Headwaters

José L. J. Ledesma; Dolly N. Kothawala; P. Bastviken; S. Maehder; Thomas Grabs; Martyn N. Futter

Despite the strong quantitative evidence that riparian zones (RZs) are the dominant source of dissolved organic carbon (DOC) to boreal streams, there is still a debate about the potential contribution of upslope areas to fluvial carbon export. To shed new light into this debate, we investigated the molecular composition of dissolved organic matter (DOM) in four upslope-riparian-stream transects in a Northern Swedish forest catchment using absorbance (A254/A365 and SUVA254) and fluorescence (fluorescence and freshness indices) metrics. Based on these metrics, our results indicate that stream water DOM molecular composition resembles that of RZs and significantly differs from that of upslope areas. The resemblance between stream and riparian DOM was most apparent for the ‘‘Dominant Source Layer’’ (DSL), a narrow RZ stratum that, theoretically, contributes the most to solute and water fluxes to streams. Spectroscopic characterization based on traditional interpretations of the metrics suggested that mineral upslope (podzol) DOM is less aromatic, more microbially derived, and more recently produced than organic riparian (histosol) and stream DOM. We conclude that RZs, and specifically DSLs, are the main sources of DOC to boreal headwater streams and potentially to other streams located in low-gradient, organic matter-rich catchments. Plain Language Summary Understanding carbon cycling in natural ecosystems is critical because ongoing climate change can promote the release of previously stored carbon in forest soils to streams and rivers, with the potential to form carbon dioxide, the main greenhouse gas. This is particularly important in boreal ecosystems, which are the largest stores of terrestrial carbon in the world. In this study, we identify the near-stream area, the so-called riparian zone, as the main source of carbon from boreal forest soils to streams. We provide qualitative data to support this, which together with previous quantitative analyses, make up enough evidence to support that the riparian zone is the main source of carbon to streams. As there is still a debate about the potential contribution of other areas in the ecosystem to the fluvial carbon export, our study importantly highlights that the riparian zone should be the focus of scientific assessments and management strategies in relation to carbon exports in surface waters.

Collaboration


Dive into the Dolly N. Kothawala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martyn N. Futter

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Stephan J. Köhler

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Núria Catalán

Catalan Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Anneli Ågren

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge