Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dolores Asensio is active.

Publication


Featured researches published by Dolores Asensio.


Plant Cell and Environment | 2014

Biogenic volatile emissions from the soil

Josep Peñuelas; Dolores Asensio; D. Tholl; K. Wenke; M. Rosenkranz; Birgit Piechulla; Jörg-Peter Schnitzler

Volatile compounds are usually associated with an appearance/presence in the atmosphere. Recent advances, however, indicated that the soil is a huge reservoir and source of biogenic volatile organic compounds (bVOCs), which are formed from decomposing litter and dead organic material or are synthesized by underground living organism or organs and tissues of plants. This review summarizes the scarce available data on the exchange of VOCs between soil and atmosphere and the features of the soil and particle structure allowing diffusion of volatiles in the soil, which is the prerequisite for biological VOC-based interactions. In fact, soil may function either as a sink or as a source of bVOCs. Soil VOC emissions to the atmosphere are often 1-2 (0-3) orders of magnitude lower than those from aboveground vegetation. Microorganisms and the plant root system are the major sources for bVOCs. The current methodology to detect belowground volatiles is described as well as the metabolic capabilities resulting in the wealth of microbial and root VOC emissions. Furthermore, VOC profiles are discussed as non-destructive fingerprints for the detection of organisms. In the last chapter, belowground volatile-based bi- and multi-trophic interactions between microorganisms, plants and invertebrates in the soil are discussed.


Plant Physiology | 2004

Airborne Ethylene May Alter Antioxidant Protection and Reduce Tolerance of Holm Oak to Heat and Drought Stress

Sergi Munné-Bosch; Josep Peñuelas; Dolores Asensio; Joan Llusià

Plant-emitted ethylene has received considerable attention as a stress hormone and is considered to play a major role at low concentrations in the tolerance of several species to biotic and abiotic stresses. However, airborne ethylene at high concentrations, such as those found in polluted areas (20–100 nL L−1) for several days, has received far less attention in studies of plant stress tolerance, though it has been shown to alter photosynthesis and reproductive stages (seed germination, flowering, and fruit ripening) in some species. To assess the potential effects of airborne ethylene on plant stress tolerance in polluted areas, the extent of oxidative stress, photo- and antioxidant protection, and visual leaf area damage were evaluated in ethylene-treated (approximately 100 nL L−1 in air) and control (without ethylene fumigation) holm oak (Quercus ilex) plants exposed to heat stress or to a combination of heat and drought stress. Control plants displayed tolerance to temperatures as high as 50°C, which might be attributed, at least in part, to enhanced xanthophyll de-epoxidation and 2-fold increases in α-tocopherol, and they suffered oxidative stress only when water deficit was superimposed on temperatures above 45°C. By contrast, ethylene-treated plants showed symptoms of oxidative stress at lower temperatures (35°C) than the controls in drought, as indicated by enhanced malondialdehyde levels, lower α-tocopherol and ascorbate concentrations, and a shift of the redox state of ascorbate to its oxidized form. In addition, ethylene-treated plants showed higher visual leaf area damage and greater reductions in the maximum efficiency of the PSII photochemistry than controls in response to heat stress or to a combination of heat and drought stress. These results demonstrate for the first time that airborne ethylene at concentrations similar to those found in polluted areas may reduce plant stress tolerance by altering, among other possible mechanisms, antioxidant defenses.


Phytochemistry | 2012

AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application

Dolores Asensio; Francesca Rapparini; Josep Peñuelas

Previous studies have shown that root colonization by arbuscular mycorrhiza (AM) fungi enhances plant resistance to abiotic and biotic stressors and finally plant growth. However, little is known about the effect of AM on isoprenoid foliar and root content. In this study we tested whether the AM symbiosis affects carbon resource allocation to different classes of isoprenoids such as the volatile nonessential isoprenoids (monoterpenes and sesquiterpenes) and the non-volatile essential isoprenoids (abscisic acid, chlorophylls and carotenoids). By subjecting the plants to stressors such as drought and to exogenous application of JA, we wanted to test their interaction with AM symbiosis in conditions where isoprenoids usually play a role in resistance to stress and in plant defence. Root colonization by AM fungi favoured the leaf production of essential isoprenoids rather than nonessential ones, especially under drought stress conditions or after JA application. The increased carbon demand brought on by AM fungi might thus influence not only the amount of carbon allocated to isoprenoids, but also the carbon partitioning between the different classes of isoprenoids, thus explaining the not previously shown decrease of root volatile isoprenoids in AM plants. We propose that since AM fungi are a nutrient source for the plant, other carbon sinks normally necessary to increase nutrient uptake can be avoided and therefore the plant can devote more resources to synthesize essential isoprenoids for plant growth.


Scientific Reports | 2017

Global patterns of phosphatase activity in natural soils

Olga Margalef; Jordi Sardans; Marcos Fernández-Martínez; Roberto Molowny-Horas; Ivan A. Janssens; P. Ciais; Daniel S. Goll; Andreas Richter; Michael Obersteiner; Dolores Asensio; Josep Peñuelas

Soil phosphatase levels strongly control the biotic pathways of phosphorus (P), an essential element for life, which is often limiting in terrestrial ecosystems. We investigated the influence of climatic and soil traits on phosphatase activity in terrestrial systems using metadata analysis from published studies. This is the first analysis of global measurements of phosphatase in natural soils. Our results suggest that organic P (Porg), rather than available P, is the most important P fraction in predicting phosphatase activity. Structural equation modeling using soil total nitrogen (TN), mean annual precipitation, mean annual temperature, thermal amplitude and total soil carbon as most available predictor variables explained up to 50% of the spatial variance in phosphatase activity. In this analysis, Porg could not be tested and among the rest of available variables, TN was the most important factor explaining the observed spatial gradients in phosphatase activity. On the other hand, phosphatase activity was also found to be associated with climatic conditions and soil type across different biomes worldwide. The close association among different predictors like Porg, TN and precipitation suggest that P recycling is driven by a broad scale pattern of ecosystem productivity capacity.


Journal of Plant Physiology | 2015

Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances

Jofre Carnicer; Jordi Sardans; Constantí Stefanescu; Andreu Ubach; Mireia Bartrons; Dolores Asensio; Josep Peñuelas

Global change analyses usually consider biodiversity as a global asset that needs to be preserved. Biodiversity is frequently analysed mainly as a response variable affected by diverse environmental drivers. However, recent studies highlight that gradients of biodiversity are associated with gradual changes in the distribution of key dominant functional groups characterized by distinctive traits and stoichiometry, which in turn often define the rates of ecosystem processes and nutrient cycling. Moreover, pervasive links have been reported between biodiversity, food web structure, ecosystem function and species stoichiometry. Here we review current global stoichiometric gradients and how future distributional shifts in key functional groups may in turn influence basic ecosystem functions (production, nutrient cycling, decomposition) and therefore could exert a feedback effect on stoichiometric gradients. The C-N-P stoichiometry of most primary producers (phytoplankton, algae, plants) has been linked to functional trait continua (i.e. to major axes of phenotypic variation observed in inter-specific analyses of multiple traits). In contrast, the C-N-P stoichiometry of higher-level consumers remains less precisely quantified in many taxonomic groups. We show that significant links are observed between trait continua across trophic levels. In spite of recent advances, the future reciprocal feedbacks between key functional groups, biodiversity and ecosystem functions remain largely uncertain. The reported evidence, however, highlights the key role of stoichiometric traits and suggests the need of a progressive shift towards an ecosystemic and stoichiometric perspective in global biodiversity analyses.


Plant Ecology | 2015

Ecological stoichiometry of C, N, and P of invasive phragmites australis and native Cyperus malaccensis species in the Minjiang River tidal estuarine wetlands of China.

W. Wang; Jordi Sardans; Chun Wang; Cong Sheng Zeng; Chuan Tong; Dolores Asensio; Josep Peñuelas

Abstract Tidal estuarine wetlands of China are rich in plant diversity, but several global change drivers, such as species invasion, are currently affecting the biogeochemical cycles of these ecosystems. We seasonally analyzed the carbon (C), nitrogen (N), and phosphorus (P) concentrations in litters and soils and in leaves, stems, and roots of the C3 invasive species Phragmites australis (Cav.) Trin. ex Steud. and of the C4 native species Cyperus malaccensis var. brevifolius Boeckeler to investigate the effect of C3 plant invasion on C, N, and P stoichiometry in the C4 plant-dominated tidal wetlands of the Minjiang River. When averaged across seasons, the invasive species P. australis had higher N concentrations and lower P concentrations in leaves than the native species C. malaccensis. N and P concentrations were lower in litter (stem and leaf), whereas C concentrations in leaf litter were higher in P. australis than in C. malaccensis. The C, N, and P concentrations of the soil also did not differ, but plants had a lower C:N and much higher N:P ratios than soils. Root C:P and N:P ratios were lower in the growing season both in the invasive and the native species. The leaf C:N, C:P and N:P ratios peaked in summer. The invasive species had lower C:N ratio in leaves and roots, and higher N:P ratios in all biomass organs and litter than the native species, an effect related with the higher N-resorption capacity of the invasive species. Interspecific differences in C:N, C:P, and N:P ratios may likely reflect the differences in plant morphology, nutrient-use efficiency, and photosynthetic capacity between the C3 (P. australis) and C4 (C. malaccensis) plants. Our results generally suggested that the success of P. australis in these wetlands was related to its slow growth and higher resorption capacity of N and P. This implies a more conservative use of limited nutrients, particularly N, by P. australis, and to higher N concentration in its biomass thus potentially contributing to its invasiveness in these estuarine wetlands.


Plant Science | 2014

Foliar CO2 in a holm oak forest subjected to 15 years of climate change simulation

Romà Ogaya; Joan Llusià; Adrià Barbeta; Dolores Asensio; Daijun Liu; Giorgio A. Alessio; Josep Peñuelas

A long-term experimental drought to simulate future expected climatic conditions for Mediterranean forests, a 15% decrease in soil moisture for the following decades, was conducted in a holm oak forest since 1999. Net photosynthetic rate, stomatal conductance and leaf water potential were measured from 1999 to 2013 in Quercus ilex and Phillyrea latifolia, two co-dominant species of this forest. These measurements were performed in four plots, two of them received the drought treatment and the two other plots were control plots. The three studied variables decreased with increases in VPD and decreases in soil moisture in both species, but the decrease of leaf water potential during summer drought was larger in P. latifolia, whereas Q. ilex reached higher net photosynthetic rates and stomatal conductance values during rainy periods than P. latifolia. The drought treatment decreased ca. 8% the net photosynthetic rates during the overall studied period in both Q. ilex and P. latifolia, whereas there were just non-significant trends toward a decrease in leaf water potential and stomatal conductance induced by drought treatment. Future drier climate may lead to a decrease in the carbon balance of Mediterranean species, and some shrub species well resistant to drought could gain competitive advantage relative to Q. ilex, currently the dominant species of this forest.


Remote Sensing | 2017

Photochemical Reflectance Index (PRI) for Detecting Responses of Diurnal and Seasonal Photosynthetic Activity to Experimental Drought and Warming in a Mediterranean Shrubland

Chao Zhang; Iolanda Filella; Daijun Liu; Romà Ogaya; Joan Llusià; Dolores Asensio; Josep Peñuelas

Climatic warming and drying are having profound impacts on terrestrial carbon cycling by altering plant physiological traits and photosynthetic processes, particularly for species in the semi-arid Mediterranean ecosystems. More effective methods of remote sensing are needed to accurately assess the physiological responses and seasonal photosynthetic activities of evergreen species to climate change. We evaluated the stand reflectance in parallel to the diurnal and seasonal changes in gas exchange, fluorescence and water contents of leaves and soil for a Mediterranean evergreen shrub, Erica multiflora, submitted to long-term experimental warming and drought. We also calculated a differential photochemical reflectance index (ΔPRI, morning PRI subtracted from midday PRI) to assess the diurnal responses of photosynthesis (ΔA) to warming and drought. The results indicated that the PRI, but not the normalized difference vegetation index (NDVI), was able to assess the seasonal changes of photosynthesis. Changes in water index (WI) were consistent with seasonal foliar water content (WC). In the warming treatment, ΔA value was higher than control in winter but ΔYield was significantly lower in both summer and autumn, demonstrating the positive effect of the warming on the photosynthesis in winter and the negative effect in summer and autumn, i.e., increased photosynthetic midday depression in summer and autumn, when temperatures were much higher than in winter. Drought treatment increased the midday depression of photosynthesis in summer. Importantly, ΔPRI was significantly correlated with ΔA both under warming and drought, indicating the applicability of ΔPRI for tracking the midday depression of photosynthetic processes. Using PRI and ΔPRI to monitor the variability in photosynthesis could provide a simple method to remotely sense photosynthetic seasonality and midday depression in response to ongoing and future environmental stresses.


Plant Cell and Environment | 2005

Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions

Josep Peñuelas; Joan Llusià; Dolores Asensio; Sergi Munné-Bosch


Plant and Soil | 2007

On-line screening of soil VOCs exchange responses to moisture, temperature and root presence

Dolores Asensio; Josep Peñuelas; Iolanda Filella; Joan Llusià

Collaboration


Dive into the Dolores Asensio's collaboration.

Top Co-Authors

Avatar

Josep Peñuelas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Joan Llusià

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Jordi Sardans

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Romà Ogaya

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Iolanda Filella

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marc Estiarte

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Mireia Bartrons

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Chun Wang

Fujian Normal University

View shared research outputs
Top Co-Authors

Avatar

Daijun Liu

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Weiqi Wang

Fujian Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge