Dolores J. Severtson
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dolores J. Severtson.
Risk Analysis | 2006
Dolores J. Severtson; Linda Ciofu Baumann; Roger L. Brown
The common sense model (CSM) shows how people process information to construct representations, or mental models, that guide responses to health threats. We applied the CSM to understand how people responded to information about arsenic-contaminated well water. Constructs included external information (arsenic level and information use), experience (perceived water quality and arsenic-related health effects), representations, safety judgments, opinions about policies to mitigate environmental arsenic, and protective behavior. Of 649 surveys mailed to private well users with arsenic levels exceeding the maximum contaminant level, 545 (84%) were analyzed. Structural equation modeling quantified CSM relationships. Both external information and experience had substantial effects on behavior. Participants who identified a water problem were more likely to reduce exposure to arsenic. However, about 60% perceived good water quality and 60% safe water. Participants with higher arsenic levels selected higher personal safety thresholds and 20% reported a lower arsenic level than indicated by their well test. These beliefs would support judgments of safe water. A variety of psychological and contextual factors may explain judgments of safe water when information suggested otherwise. Information use had an indirect effect on policy beliefs through understanding environmental causes of arsenic. People need concrete information about environmental risk at both personal and environmental-systems levels to promote a comprehensive understanding and response. The CSM explained responses to arsenic information and may have application to other environmental risks.
Journal of Health Communication | 2012
Dolores J. Severtson; Christine Vatovec
Theory-based research is needed to understand how maps of environmental health risk information influence risk beliefs and protective behavior. Using theoretical concepts from multiple fields of study including visual cognition, semiotics, health behavior, and learning and memory supports a comprehensive assessment of this influence. The authors report results from 13 cognitive interviews that provide theory-based insights into how visual features influenced what participants saw and the meaning of what they saw as they viewed 3 formats of water test results for private wells (choropleth map, dot map, and a table). The unit of perception, color, proximity to hazards, geographic distribution, and visual salience had substantial influences on what participants saw and their resulting risk beliefs. These influences are explained by theoretical factors that shape what is seen, properties of features that shape cognition (preattentive, symbolic, visual salience), information processing (top-down and bottom-up), and the strength of concrete compared with abstract information. Personal relevance guided top-down attention to proximal and larger hazards that shaped stronger risk beliefs. Meaning was more local for small perceptual units and global for large units. Three aspects of color were important: preattentive “incremental risk” meaning of sequential shading, symbolic safety meaning of stoplight colors, and visual salience that drew attention. The lack of imagery, geographic information, and color diminished interest in table information. Numeracy and prior beliefs influenced comprehension for some participants. Results guided the creation of an integrated conceptual framework for application to future studies. Ethics should guide the selection of map features that support appropriate communication goals.
Risk Analysis | 2009
Dolores J. Severtson; Jeffrey B. Henriques
Lay people have difficulty understanding the meaning of environmental health risk information. Visual images can use features that leverage visual perception capabilities and semiotic conventions to promote meaningful comprehension. Such evidence-based features were employed to develop two images of a color-coded visual scale to convey drinking water test results. The effect of these images and a typical alphanumeric (AN) lab report were explored in a repeated measures randomized trial among 261 undergraduates. Outcome measures included risk beliefs, emotions, personal safety threshold, mitigation intentions, the durability of beliefs and intentions over time, and test result recall. The plain image conveyed the strongest risk message overall, likely due to increased visual salience. The more detailed graded image conveyed a stronger message than the AN format only for females. Images only prompted meaningful risk reduction intentions among participants with optimistically biased safety threshold beliefs. Fuzzy trace theory supported some findings as follow. Images appeared to promote the consolidation of beliefs over time from an initial meaning of safety to an integrated meaning of safety and health risk; emotion potentially shaped this process. Although the AN report fostered more accurate recall, images were related to more appropriate beliefs and intentions at both time points. Findings hinted at the potential for images to prompt appropriate beliefs independent of accurate factual knowledge. Overall, results indicate that images facilitated meaningful comprehension of environmental health risk information and suggest foci for further research.
Risk Analysis | 2013
Dolores J. Severtson; Jeffrey D. Myers
Maps are often used to convey information generated by models, for example, modeled cancer risk from air pollution. The concrete nature of images, such as maps, may convey more certainty than warranted for modeled information. Three map features were selected to communicate the uncertainty of modeled cancer risk: (i) map contours appeared in or out of focus, (ii) one or three colors were used, and (iii) a verbal-relative or numeric risk expression was used in the legend. Study aims were to assess how these features influenced risk beliefs and the ambiguity of risk beliefs at four assigned map locations that varied by risk level. We applied an integrated conceptual framework to conduct this full factorial experiment with 32 maps that varied by the three dichotomous features and four risk levels; 826 university students participated. Data was analyzed using structural equation modeling. Unfocused contours and the verbal-relative risk expression generated more ambiguity than their counterparts. Focused contours generated stronger risk beliefs for higher risk levels and weaker beliefs for lower risk levels. Number of colors had minimal influence. The magnitude of risk level, conveyed using incrementally darker shading, had a substantial dose-response influence on the strength of risk beliefs. Personal characteristics of prior beliefs and numeracy also had substantial influences. Bottom-up and top-down information processing suggest why iconic visual features of incremental shading and contour focus had the strongest visual influences on risk beliefs and ambiguity. Variations in contour focus and risk expression show promise for fostering appropriate levels of ambiguity.
Journal of the American Medical Informatics Association | 2011
Calvin K. L. Or; Ben-Tzion Karsh; Dolores J. Severtson; Laura J. Burke; Roger L. Brown; Patricia Flatley Brennan
Risk Analysis | 2012
Dolores J. Severtson; James E. Burt
Journal of Health Communication | 2008
Dolores J. Severtson; Linda Ciofu Baumann; Roger L. Brown
Research in Nursing & Health | 2013
Dolores J. Severtson
american medical informatics association annual symposium | 2006
Susan Kossman; Gail R. Casper; Dolores J. Severtson; Anne-Sophie Grenier; Calvin K. L. Or; Pascale Carayon; Patricia Flatley Brennan
Public Health Nursing | 1997
Eileen J. Porter; Dolores J. Severtson