Domen Lestan
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Domen Lestan.
Plant and Soil | 2001
Helena Grčman; Š. Velikonja-Bolta; Dominik Vodnik; B. Kos; Domen Lestan
Synthetic chelates such as ethylene diamine tetraacetic acid (EDTA) have been shown to enhance phytoextraction of some heavy metals from contaminated soil. In a soil column study, we examined the effect of EDTA on the uptake of Pb, Zn and Cd by Chinese cabbage (Brassica rapa), mobilization and leaching of heavy metals and the toxicity effects of EDTA additions on plants. The most effective was a single dose of 10 mmol EDTA kg−1 soil where we detected Pb, Zn and Cd concentrations that were 104.6, 3.2 and 2.3-times higher in the aboveground plant biomass compared to the control treatments. The same EDTA addition decreased the concentration of Pb, Zn and Cd in roots of tested plants by 41, 71 and 69%, respectively compared to concentrations in the roots of control plants. In columns treated with 10 mmol kg−1 EDTA, up to 37.9, 10.4 and 56.3% of initial total Pb, Zn and Cd in soil were leached down the soil profile, suggesting high solubility of heavy metals-EDTA complexes. EDTA treatment had a strong phytotoxic effect on the red clover (Trifolium pratense) in bioassay experiment. Moreover, the high dose EDTA additions inhibited the development of arbuscular mycorrhiza. The results of phospholipid fatty acid analyses indicated toxic effects of EDTA on soil fungi and increased environmental stress of soil microfauna.
Chemosphere | 2011
D. Tica; Metka Udovic; Domen Lestan
The in situ stabilization of potentially toxic metals (PTMs), using various easily available amendments, is a cost-effective remediation method for contaminated soils. In the present study, we investigated the effectiveness of apatite and a commercial mixture of dolomite, diatomite, smectite basaltic tuff, bentonite, alginite and zeolite (Slovakite) on Pb, Zn, Cu and Cd stabilization by means of decreasing their bioavailability in contaminated soil from an old lead and zinc smelter site in Arnoldstein, Austria. We also investigated the impact of 5% (w/w) apatite and Slovakite applications on soil functionality and quality, as assessed by glucose-induced soil respiration, dehydrogenase, acid and alkaline phosphatase and β-glucosidase activity. Both amendments resulted in increased soil pH and decreased PTM potential bioavailability assessed by diethylenetriamine pentaacetic acid extraction and by sequential extractions in the water-soluble and exchangeable fractions. The efficiency of stabilization was reflected in the soil respiration rate and in enzymatic activity. The β-glucosidase activity assay was the most responsive of them.
Chemosphere | 2009
Metka Udovic; Domen Lestan
Soil washing remediation techniques usually remove only the labile heavy metal (HM) species from the soil, leaving the residual ones in less available/mobile forms, thus disturbing the chemical equilibrium among different species of HM in the soil. Re-establishing such equilibrium and shifting HM back to more available/mobile chemical forms could occur after exposing the remediated soil to environmental abiotic (ageing) factors. Contaminated soil from a smelter site (Pb 4600 mg kg(-1), Zn 1800 mg kg(-1), Cd 30 mg kg(-1)) was leached with increasing EDTA concentrations (2.5, 5.0, 10.0, 20.0, 40.0 and 4-consecutive steps of 40.0 mmol EDTA kg(-1) of soil). A gradient of removed HM was reached: from 6% to 73% of initial Pb, from 3% to 23% of initial Zn and from 17% to 74% of initial Cd were removed. Repetitive temperature changes (105 degrees C and -20 degrees C) were used to mimic abiotic factors acting on residual HM after EDTA soil leaching in saturated soil at 10% and 90% of soil water holding capacity. Fractionation using sequential extractions, mobility, and phytoavailability of Pb, Zn and Cd and Pb oral bioavailability were determined for aged and non-aged soil. The ageing treatment consistently lowered HM phytoavailability in the original (non-leached) and all treated (chelant-leached) soils. However, Pb, Zn and Cd behaved differently from each other; Pb mobility increased, Cd mobility decreased, while Zn mobility did not change. The results indicate that abiotic (ageing) processes change the availability/mobility of residual HM in all leaching treatments and should thus be considered in final remediation effectivity evaluation.
Soil & Sediment Contamination | 2010
Domen Lestan; Helena Grčman; Marko Zupan; Nadja Bačac
Soil samples (0 to 5 cm) from 30 locations in the Celje region, Slovenia, an area that has been subjected to severe industrial emissions of Pb and Zn, were analyzed for selected soil properties and subjected to a six-step sequential extraction of Pb and Zn. Phyto-available forms of heavy metals: soluble in soil solution and exchangeable from soil colloids to soil solution together accounted for 0 to 1.68% of Pb and 0 to 40.8% of total soil Zn. Most of the Pb and Zn was found to reside in less labile forms bound to carbonate (2.04 to 43.5% Pb, 3.9 to 35.1% Zn), bound to Fe and Mn oxides (0 to 16.1% Pb, 1.4 to 25.4% Zn), bound to organic matter (35.8 to 71.1% Pb, 14.8 to 56.2% Zn), and in the residual fraction (10.4 to 53.4% Pb, 14.2 to 75.3% Zn). Factor analysis and stepwise multiple regression revealed that the concentration of Pb in the proposed indicator plant, narrow leaf plantain (Plantago lanceolata) did not correlate with the measured soil properties, Pb fractionation in soil, and total soil Pb. Plant uptake of Zn, however, significantly correlated with soil pH and with the share of phyto-available forms of Zn in the soil (R2 = 86.9). A statistically significant correlation (P<0.01) was found between the fractions of Pb and Zn carbonates and soil organic matter content (R2 = 90.6 and 90.9, respectively); the fraction of Pb bound to organic matter and soil organic matter content (R2 = 90.6); the residual fraction of Pb and total Pb content in soil (R2 = 95.7); the fraction of Zn bound to Fe an Mn oxides, the fraction of Zn bound to organic matter, the residual fraction of Zn and total Zn content in soil (R2 = 75.9, 93.2, and 87.4, respectively). Soil texture, pH, and cation exchange capacity did not affect the relative proportions of Pb and Zn forms in soil.
Chemosphere | 2013
Domen Lestan
Pb, Zn and Cd contaminated garden soil (5249, 3348 and 20.6 mg kg(-1), respectively) rich with fines and organic matter was washed with a solution of 120 mmol EDTA kg(-1) of soil in a pilot-scale remediation plant operating in a batch (60 kg of soil) mode. After soil washing, the solid phase and used washing solution were separated in a chamber filter press. A base/acid pair Ca(OH)(2)/H(2)SO(4) was used to impose a pH gradient for EDTA recycling from used washing solution and, coupled with an electrochemical advanced oxidation process using a graphite anode, for cleansing and recycling the process water, which was used for rinsing the soil solid phase in the press. On average (5 batches), 75%, 26% and 66% of Pb, Zn and Cd, respectively, was removed from the soil, 71% of EDTA was recycled and no waste water was generated. The variable costs of the novel remediation process (materials, energy but not labour) amounted to 66 € t(-1) of remediated soil. The results of the pilot-scale testing indicate that scaling-up the process to a commercial level is technically and economically feasible.
Science of The Total Environment | 2014
Masa Jelusic; Domen Lestan
We applied a multi-level approach assessing the quality, toxicity and functioning of Pb, Zn and Cd contaminated/remediated soil from a vegetable garden in Meza Valley, Slovenia. Contaminated soil was extracted with EDTA and placed into field experimental plots equipped with lysimeters. Soil properties were assessed by standard pedological analysis. Fractionation and leachability of toxic metals were analyzed by sequential extraction and TCLP and metal bioaccessibility by UBM tests. Soil respiration and enzyme activities were measured as indicators of soil functioning. Remediation reduced the metal burden by 80, 28 and 72% for Pb, Zn and Cd respectively, with a limited impact on soil pedology. Toxic metals associated with labile soil fractions were largely removed. No shifts between labile and residual fractions were observed during the seven months of the experiment. Initial metal leaching measured through lysimeters eventually ceased. However, remediation significantly diminished potential soil enzyme activity and no trends were observed of the remediated soil recovering its biological properties. Soil washing successfully removed available forms of Pb, Zn and Cd and thus lowered the human and environmental hazards of the remediated soil; however, remediation also extracted the trace elements essential for soil biota. In addition to reduced water holding capacity, soil health was not completely restored.
Journal of Hazardous Materials | 2010
Grega E. Voglar; Domen Lestan
In a laboratory study, Portland cement (15%, w/w) was used for solidification/stabilisation (S/S) of Cd, Pb, Zn, Cu, Ni and As contaminated soils from the former industrial site. Soils formed solid monoliths with cement. S/S effectiveness was assessed by measuring the mechanical strength of the monoliths, concentrations of metals in deionised water and TCLP (toxicity characteristic leaching procedure) soil extracts, and mass transfer of metals. Concentrations of Cd, Pb, Zn and Ni in water extracts from S/S soils generally decreased, concentrations of As remained unchanged, while concentrations of Cu increased. Concentrations of Cd, Pb, Zn and Ni in the TCLP extracts from S/S soils were lower than from original soils. Cu extractability was lower in most soil samples, while the extractability of As from S/S soils increased. Overall, the concentration of metals in deionised water and TCLP solution, obtained after extraction of the S/S soils, was below the regulatory limits. S/S greatly reduced the mass transfer of Cd (up to 83-times), Pb (up to 13.7-times) and Zn (up to 294-times). Mass transfer of Ni and As was generally also reduced, while that of Cu increased in some S/S soils. Based on the findings of mass-transfer mechanism analysis the predominant mechanism of release was surface wash-off of metals otherwise physically encapsulated within the cementous soil matrix.
Journal of Hazardous Materials | 2009
Maja Pociecha; Domen Lestan
The feasibility of a two-phase method for remediation of Cu (364+/-2 mg kg(-1)) contaminated vineyard soil was evaluated. In the first phase we used ethylenediamine tetraacetae (EDTA) for Cu leaching, while in the second phase we used an electrochemical advanced oxidation process (EAOP) for the treatment and reuse of the washing solution for soil rinsing (removal of soil-retained, chelant-mobilized Cu complexes) in a closed loop. In the EAOP, a boron-doped diamond anode was used for the generation of hydroxyl radicals and oxidative decomposition of EDTA-metal complexes at a constant current density (40 mA cm(-2)). The released Cu was removed from the solution mostly as an electro-deposit on the cathode. Two consecutive additions of 10 mmol kg(-1) EDTA removed 26% of Cu from the soil, mostly from carbonate and oxide soil fractions (58% and 40% Cu reduction). The soil Cu oral availability (in vitro Physiologically Based Extraction Test) was reduced after remediation by 42% and 51% in the simulated stomach and intestinal phases. The discharge solution was clear, almost colorless, with pH 8.4 and 0.5 mg L(-1) Cu and 0.07 mM EDTA. The novel method enables soil Cu availability stripping using small volumes of process waters, and no wastewater generation or other emissions into the environment.
Chemosphere | 2012
Metka Udovic; Domen Lestan
The environmental risk of potentially toxic metals (PTMs) in soil can be diminished by their removal. Among the available remediation techniques, soil leaching with various solutions is one of the most effective but data about the impact on soil chemical and biological properties are still scarce. We studied the effect of two common leaching agents, hydrochloric acid (HCl) and a chelating agent (EDTA) on Pb, Zn, Cd removal and accessibility and on physico-chemical and biological properties in one calcareous, pH neutral soil and one non-calcareous acidic soil. EDTA was a more efficient leachant compared to HCl: up to 133-times lower chelant concentration was needed for the same percentage (35%) of Pb removal. EDTA and HCl concentrations with similar PTM removal efficiency decreased PTM accessibility in both soils but had different impacts on soil properties. As expected, HCl significantly dissolved carbonates from calcareous soil, while EDTA leaching increased the pH of the acidic soil. Enzyme activity assays showed that leaching with HCl had a distinctly negative impact on soil microbial and enzyme activity, while leaching with EDTA had less impact. Our results emphasize the importance of considering the ecological impact of remediation processes on soil in addition to the capacity for PTM removal.
Compost Science & Utilization | 2003
Spela Velikonja Bolta; Rok Mihelič; Franc Lobnik; Domen Lestan
Inoculation of a mixture of household organics and shredded wood with inocula from the active phase of composting enhanced mineralization of organic matter and yielded a biologically stabilized product with a more favorable C/N ratio than in a non-inoculated treatment. Analysis of phospholipid fatty acids was used to determine total viable microbial biomass and relative amounts of bacteria, Gram positive and Gram negative bacteria, actinomycetes, fungi, thermophiles and nonthermophiles in compost. The initial viable microbial biomass was 6-fold higher in inoculated than in noninoculated compost. The thermophilic phase occurred immediately after inoculation and the total viable biomass afterwards followed the course of temperature. The ratio of viable (sum of phospholipid fatty acids) to dead (sum of diglyceride fatty acids) microbial biomass during this period was generally higher at lower composting temperatures in both inoculated and noninoculated compost. During composting, fluctuations in total viable microbial biomass and in the relative amounts of indicator PLFAs of all microbial groups except Gram negative bacteria was more intensive in noninoculated compost.