Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Domenic A. LaRosa is active.

Publication


Featured researches published by Domenic A. LaRosa.


BMC Pregnancy and Childbirth | 2014

Creatine supplementation during pregnancy: summary of experimental studies suggesting a treatment to improve fetal and neonatal morbidity and reduce mortality in high-risk human pregnancy

Hayley Dickinson; Stacey J. Ellery; Zoe Ireland; Domenic A. LaRosa; Rodney J. Snow; David W. Walker

While the use of creatine in human pregnancy is yet to be fully evaluated, its long-term use in healthy adults appears to be safe, and its well documented neuroprotective properties have recently been extended by demonstrations that creatine improves cognitive function in normal and elderly people, and motor skills in sleep-deprived subjects. Creatine has many actions likely to benefit the fetus and newborn, because pregnancy is a state of heightened metabolic activity, and the placenta is a key source of free radicals of oxygen and nitrogen. The multiple benefits of supplementary creatine arise from the fact that the creatine-phosphocreatine [PCr] system has physiologically important roles that include maintenance of intracellular ATP and acid–base balance, post-ischaemic recovery of protein synthesis, cerebral vasodilation, antioxidant actions, and stabilisation of lipid membranes. In the brain, creatine not only reduces lipid peroxidation and improves cerebral perfusion, its interaction with the benzodiazepine site of the GABAA receptor is likely to counteract the effects of glutamate excitotoxicity – actions that may protect the preterm and term fetal brain from the effects of birth hypoxia. In this review we discuss the development of creatine synthesis during fetal life, the transfer of creatine from mother to fetus, and propose that creatine supplementation during pregnancy may have benefits for the fetus and neonate whenever oxidative stress or feto-placental hypoxia arise, as in cases of fetal growth restriction, premature birth, or when parturition is delayed or complicated by oxygen deprivation of the newborn.


Developmental Neuroscience | 2014

Prenatal exposure to the viral mimetic poly I:C alters fetal brain cytokine expression and postnatal behaviour

Udani Ratnayake; Tracey A. Quinn; Domenic A. LaRosa; Hayley Dickinson; David W. Walker

An increased incidence of mental illness disorders is found in children and adolescents born to mothers who experienced an infection-based illness during pregnancy. Animal models to study the prenatal origin of such outcomes of pregnancy have largely used conventional rodents, which are immature (altricial) at birth compared with the human neonate. In this study, we used the precocial spiny mouse (Acomys cahirinus), whose offspring have completed organogenesis at birth, and administered a single subcutaneous injection of a 5 mg/kg dose of the viral mimetic poly I:C (polyriboinosinic-polyribocytidylic acid) at mid gestation (20 days; term is 39 days). Prenatal exposure to poly I:C caused a transient weight loss in the pregnant dam, produced a downregulation of the proinflammatory cytokine tumour necrosis factor-α in the fetal brain, and resulted in abnormalities in sensorimotor gating and reduced social interaction, memory and learning in juvenile offspring. No changes in exploratory activity or anxiety and fear behaviours were found between the treatment groups. This study provides evidence that, in a rodent model that more closely resembles human brain development, prenatal infection can lead to behavioural abnormalities in postnatal life.


PLOS ONE | 2016

Maternal Creatine Supplementation during Pregnancy Prevents Long-Term Changes in Diaphragm Muscle Structure and Function after Birth Asphyxia

Domenic A. LaRosa; Stacey J. Ellery; Helena C. Parkington; Rod J. Snow; David W. Walker; Hayley Dickinson

Using a model of birth asphyxia, we previously reported significant structural and functional deficits in the diaphragm muscle in spiny mice, deficits that are prevented by supplementing the maternal diet with 5% creatine from mid-pregnancy. The long-term effects of this exposure are unknown. Pregnant spiny mice were fed control or 5% creatine-supplemented diet for the second half of pregnancy, and fetuses were delivered by caesarean section with or without 7.5 min of in-utero asphyxia. Surviving pups were raised by a cross-foster dam until 33±2 days of age when they were euthanized to obtain the diaphragm muscle for ex-vivo study of twitch tension and muscle fatigue, and for structural and enzymatic analyses. Functional analysis of the diaphragm revealed no differences in single twitch contractile parameters between any groups. However, muscle fatigue, induced by stimulation of diaphragm strips with a train of pulses (330ms train/sec, 40Hz) for 300sec, was significantly greater for asphyxia pups compared with controls (p<0.05), and this did not occur in diaphragms of creatine + asphyxia pups. Birth asphyxia resulted in a significant increase in the proportion of glycolytic, fast-twitch fibres and a reduction in oxidative capacity of Type I and IIb fibres in male offspring, as well as reduced cross-sectional area of all muscle fibre types (Type I, IIa, IIb/d) in both males and females at 33 days of age. None of these changes were observed in creatine + asphyxia animals. Thus, the changes in diaphragm fatigue and structure induced by birth asphyxia persist long-term but are prevented by maternal creatine supplementation.


Reproductive Sciences | 2013

Maternal dietary creatine supplementation does not alter the capacity for creatine synthesis in the newborn spiny mouse.

Hayley Dickinson; Zoe Ireland; Domenic A. LaRosa; Bree Aimee O'Connell; Stacey J. Ellery; Rodney J. Snow; David W. Walker

We have previously reported that maternal creatine supplementation protects the neonate from hypoxic injury. Here, we investigated whether maternal creatine supplementation altered expression of the creatine synthesis enzymes (arginine:glycine amidinotransferase [AGAT], guanidinoaceteate methyltransferase [GAMT]) and the creatine transporter (solute carrier family 6 [neurotransmitter transporter, creatine] member 8: SLC6A8) in the term offspring. Pregnant spiny mice were fed a 5% creatine monohydrate diet from midgestation (day 20) to term (39 days). Placentas and neonatal kidney, liver, heart, and brain collected at 24 hours of age underwent quantitative polymerase chain reaction and Western blot analysis. Maternal creatine had no effect on the expression of AGAT and GAMT in neonatal kidney and liver, but mRNA expression of AGAT in brain tissues was significantly decreased in both male and female neonates born to mothers who were fed the creatine diet. SLC6A8 expression was not affected by maternal dietary creatine loading in any tissues. Maternal dietary creatine supplementation from midgestation in the spiny mouse did not alter the capacity for creatine synthesis or transport.


Pediatric Research | 2016

Maternal creatine supplementation during pregnancy prevents acute and long-term deficits in skeletal muscle after birth asphyxia: a study of structure and function of hind limb muscle in the spiny mouse

Domenic A. LaRosa; Stacey J. Ellery; Rod J. Snow; David W. Walker; Hayley Dickinson

Background:Maternal antenatal creatine supplementation protects the brain, kidney, and diaphragm against the effects of birth asphyxia in the spiny mouse. In this study, we examined creatine’s potential to prevent damage to axial skeletal muscles.Methods:Pregnant spiny mice were fed a control or creatine-supplemented diet from mid-pregnancy, and 1 d before term (39 d), fetuses were delivered by c-section with or without 7.5 min of birth asphyxia. At 24 h or 33 ± 2 d after birth, gastrocnemius muscles were obtained for ex-vivo study of twitch-tension, muscle fatigue, and structural and histochemical analysis.Results:Birth asphyxia significantly reduced cross-sectional area of all muscle fiber types (P < 0.05), and increased fatigue caused by repeated tetanic contractions at 24 h of age (P < 0.05). There were fewer (P < 0.05) Type I and IIa fibers and more (P < 0.05) Type IIb fibers in male gastrocnemius at 33 d of age. Muscle oxidative capacity was reduced (P < 0.05) in males at 24 h and 33 d and in females at 24 h only. Maternal creatine treatment prevented all asphyxia-induced changes in the gastrocnemius, improved motor performance.Conclusion:This study demonstrates that creatine loading before birth protects the muscle from asphyxia-induced damage at birth.


Frontiers in Pediatrics | 2015

Unraveling the Links Between the Initiation of Ventilation and Brain Injury in Preterm Infants

Samantha K. Barton; Mary Tolcos; Suzanne L. Miller; Charles Christopher Roehr; Georg M. Schmölzer; Peter G Davis; Timothy J. M. Moss; Domenic A. LaRosa; Stuart B. Hooper; Graeme R. Polglase

The initiation of ventilation in the delivery room is one of the most important but least controlled interventions a preterm infant will face. Tidal volumes (V T) used in the neonatal intensive care unit are carefully measured and adjusted. However, the V Ts that an infant receives during resuscitation are usually unmonitored and highly variable. Inappropriate V Ts delivered to preterm infants during respiratory support substantially increase the risk of injury and inflammation to the lungs and brain. These may cause cerebral blood flow instability and initiate a cerebral inflammatory cascade. The two pathways increase the risk of brain injury and potential life-long adverse neurodevelopmental outcomes. The employment of new technologies, including respiratory function monitors, can improve and guide the optimal delivery of V Ts and reduce confounders, such as leak. Better respiratory support in the delivery room has the potential to improve both respiratory and neurological outcomes in this vulnerable population.


BMC Pregnancy and Childbirth | 2015

Maternal creatine homeostasis is altered during gestation in the spiny mouse: is this a metabolic adaptation to pregnancy?

Stacey Joan Ellery; Domenic A. LaRosa; Michelle M. Kett; Paul A. Della Gatta; Rodney J. Snow; David W. Walker; Hayley Dickinson

BackgroundPregnancy induces adaptations in maternal metabolism to meet the increased need for nutrients by the placenta and fetus. Creatine is an important intracellular metabolite obtained from the diet and also synthesised endogenously. Experimental evidence suggests that the fetus relies on a maternal supply of creatine for much of gestation. However, the impact of pregnancy on maternal creatine homeostasis is unclear. We hypothesise that alteration of maternal creatine homeostasis occurs during pregnancy to ensure adequate levels of this essential substrate are available for maternal tissues, the placenta and fetus. This study aimed to describe maternal creatine homeostasis from mid to late gestation in the precocial spiny mouse.MethodsPlasma creatine concentration and urinary excretion were measured from mid to late gestation in pregnant (n = 8) and age-matched virgin female spiny mice (n = 6). At term, body composition and organ weights were assessed and tissue total creatine content determined. mRNA expression of the creatine synthesising enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), and the creatine transporter (CrT1) were assessed by RT-qPCR. Protein expression of AGAT and GAMT was also assessed by western blot analysis.ResultsPlasma creatine and renal creatine excretion decreased significantly from mid to late gestation (P < 0.001, P < 0.05, respectively). Pregnancy resulted in increased lean tissue (P < 0.01), kidney (P < 0.01), liver (P < 0.01) and heart (P < 0.05) mass at term. CrT1 expression was increased in the heart (P < 0.05) and skeletal muscle (P < 0.05) at term compared to non-pregnant tissues, and creatine content of the heart (P < 0.05) and kidney (P < 0.001) were also increased at this time. CrT1 mRNA expression was down-regulated in the liver (<0.01) and brain (<0.01) of pregnant spiny mice at term. Renal AGAT mRNA (P < 0.01) and protein (P < 0.05) expression were both significantly up-regulated at term, with decreased expression of AGAT mRNA (<0.01) and GAMT protein (<0.05) observed in the term pregnant heart. Brain AGAT (<0.01) and GAMT (<0.001) mRNA expression were also decreased at term.ConclusionChange of maternal creatine status (increased creatine synthesis and reduced creatine excretion) may be a necessary adjustment of maternal physiology to pregnancy to meet the metabolic demands of maternal tissues, the placenta and developing fetus.


Archives of Disease in Childhood | 2017

Physiologically based cord clamping stabilises cardiac output and reduces cerebrovascular injury in asphyxiated near-term lambs

Graeme R. Polglase; Douglas A Blank; Samantha K. Barton; Suzanne L. Miller; Vanesa Stojanovska; Martin Kluckow; Andrew W Gill; Domenic A. LaRosa; Arjan B. te Pas; Stuart B. Hooper

Background Physiologically based cord clamping (PBCC) has advantages over immediate cord clamping (ICC) during preterm delivery, but its efficacy in asphyxiated infants is not known. We investigated the physiology of PBCC following perinatal asphyxia in near-term lambs. Methods Near-term sheep fetuses (139±2 (SD) days’ gestation) were instrumented to measure umbilical, carotid, pulmonary and femoral arterial flows and pressures. Systemic and cerebral oxygenation was recorded using pulse oximetry and near-infrared spectroscopy, respectively. Fetal asphyxia was induced until mean blood pressure reached ~20 mm Hg, where lambs underwent ICC and initiation of ventilation (n=7), or ventilation for 15 min prior to umbilical cord clamping (PBCC; n=8). Cardiovascular parameters were measured and white and grey matter microvascular integrity assessed using qRT-PCR and immunohistochemistry. Results PBCC restored oxygenation and cardiac output at the same rate and in a similar fashion to lambs resuscitated following ICC. However, ICC lambs had a rapid and marked overshoot in mean systemic arterial blood pressure from 1 to 10 min after ventilation onset, which was largely absent in PBCC lambs. ICC lambs had increased cerebrovascular injury, as indicated by reduced expression of blood–brain barrier proteins and increased cerebrovascular protein leakage in the subcortical white matter (by 86%) and grey matter (by 47%). Conclusion PBCC restored cardiac output and oxygenation in an identical time frame as ICC, but greatly mitigated the postasphyxia rebound hypertension measured in ICC lambs. This likely protected the asphyxiated brain from cerebrovascular injury. PBCC may be a more suitable option for the resuscitation of the asphyxiated newborn compared with the current standard of ICC.


Pediatric Research | 2017

Renal Dysfunction in Early Adulthood Following Birth Asphyxia in Male Spiny Mice, and its Amelioration by Maternal Creatine Supplementation During Pregnancy.

Stacey J. Ellery; Domenic A. LaRosa; Luise A. Cullen-McEwen; Russell D. Brown; Rod J. Snow; David W. Walker; Michelle M. Kett; Hayley Dickinson

Background:Acute kidney injury affects ~70% of asphyxiated newborns, and increases their risk of developing chronic kidney disease later in life. Acute kidney injury is driven by renal oxygen deprivation during asphyxia, thus we hypothesized that creatine administered antenatally would protect the kidney from the long-term effects of birth asphyxia.Methods:Pregnant spiny mice were fed standard chow or chow supplemented with 5% creatine from 20-d gestation (midgestation). One day prior to term (37-d gestation), pups were delivered by caesarean or subjected to intrauterine asphyxia. Litters were allocated to one of two time-points. Kidneys were collected at 1 mo of age to estimate nephron number (stereology). Renal function (excretory profile and glomerular filtration rate) was measured at 3 mo of age, and kidneys then collected for assessment of glomerulosclerosis.Results:Compared with controls, at 1 mo of age male (but not female) birth-asphyxia offspring had 20% fewer nephrons (P < 0.05). At 3 mo of age male birth-asphyxia offspring had 31% lower glomerular filtration rate (P < 0.05) and greater glomerular collagen IV content (P < 0.01). Antenatal creatine prevented these renal injuries arising from birth asphyxia.Conclusion:Maternal creatine supplementation during pregnancy may be an effective prophylactic to prevent birth asphyxia induced acute kidney injury and the emergence of chronic kidney disease.


Journal of Paediatrics and Child Health | 2016

Lung ultrasound accurately detects pneumothorax in a preterm newborn lamb model

Douglas A. Blank; Stuart B. Hooper; Corinna Binder-Heschl; Martin Kluckow; Andrew W Gill; Domenic A. LaRosa; Ishmael M. Inocencio; Alison Moxham; Karyn Rodgers; Valerie A. Zahra; Peter G Davis; Graeme R. Polglase

Pneumothorax is a common emergency affecting extremely preterm. In adult studies, lung ultrasound has performed better than chest x‐ray in the diagnosis of pneumothorax. The purpose of this study was to determine the efficacy of lung ultrasound (LUS) examination to detect pneumothorax using a preterm animal model.

Collaboration


Dive into the Domenic A. LaRosa's collaboration.

Top Co-Authors

Avatar

Hayley Dickinson

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Graeme R. Polglase

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stacey J. Ellery

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Valerie A. Zahra

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samantha K. Barton

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Stuart B. Hooper

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Andrew W Gill

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge