Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Domenico Girelli is active.

Publication


Featured researches published by Domenico Girelli.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status

Simonetta Friso; Sang-Woon Choi; Domenico Girelli; Joel B. Mason; Gregory G. Dolnikowski; Pamela J. Bagley; Paul F. Jacques; Irwin H. Rosenberg; Roberto Corrocher; Jacob Selhub

DNA methylation, an essential epigenetic feature of DNA that modulates gene expression and genomic integrity, is catalyzed by methyltransferases that use the universal methyl donor S-adenosyl-l-methionine. Methylenetetrahydrofolate reductase (MTHFR) catalyzes the synthesis of 5-methyltetrahydrofolate (5-methylTHF), the methyl donor for synthesis of methionine from homocysteine and precursor of S-adenosyl-l-methionine. In the present study we sought to determine the effect of folate status on genomic DNA methylation with an emphasis on the interaction with the common C677T mutation in the MTHFR gene. A liquid chromatography/MS method for the analysis of nucleotide bases was used to assess genomic DNA methylation in peripheral blood mononuclear cell DNA from 105 subjects homozygous for this mutation (T/T) and 187 homozygous for the wild-type (C/C) MTHFR genotype. The results show that genomic DNA methylation directly correlates with folate status and inversely with plasma homocysteine (tHcy) levels (P < 0.01). T/T genotypes had a diminished level of DNA methylation compared with those with the C/C wild-type (32.23 vs.62.24 ng 5-methylcytosine/μg DNA, P < 0.0001). When analyzed according to folate status, however, only the T/T subjects with low levels of folate accounted for the diminished DNA methylation (P < 0.0001). Moreover, in T/T subjects DNA methylation status correlated with the methylated proportion of red blood cell folate and was inversely related to the formylated proportion of red blood cell folates (P < 0.03) that is known to be solely represented in those individuals. These results indicate that the MTHFR C677T polymorphism influences DNA methylation status through an interaction with folate status.


Nature Genetics | 2009

Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction

Daniel F. Gudbjartsson; Unnur S. Bjornsdottir; Eva Halapi; Anna Helgadottir; Patrick Sulem; Gudrun M. Jonsdottir; Gudmar Thorleifsson; Hafdis T. Helgadottir; Valgerdur Steinthorsdottir; Hreinn Stefansson; Carolyn Williams; Jennie Hui; John Beilby; Nicole M. Warrington; Alan James; Lyle J. Palmer; Gerard H. Koppelman; Andrea Heinzmann; Marcus Krueger; H. Marike Boezen; Amanda Wheatley; Janine Altmüller; Hyoung Doo Shin; Soo-Taek Uh; Hyun Sub Cheong; Brynja Jonsdottir; David Gislason; Choon-Sik Park; Lm Rasmussen; Celeste Porsbjerg

Eosinophils are pleiotropic multifunctional leukocytes involved in initiation and propagation of inflammatory responses and thus have important roles in the pathogenesis of inflammatory diseases. Here we describe a genome-wide association scan for sequence variants affecting eosinophil counts in blood of 9,392 Icelanders. The most significant SNPs were studied further in 12,118 Europeans and 5,212 East Asians. SNPs at 2q12 (rs1420101), 2q13 (rs12619285), 3q21 (rs4857855), 5q31 (rs4143832) and 12q24 (rs3184504) reached genome-wide significance (P = 5.3 × 10−14, 5.4 × 10−10, 8.6 × 10−17, 1.2 × 10−10 and 6.5 × 10−19, respectively). A SNP at IL1RL1 associated with asthma (P = 5.5 × 10−12) in a collection of ten different populations (7,996 cases and 44,890 controls). SNPs at WDR36, IL33 and MYB that showed suggestive association with eosinophil counts were also associated with atopic asthma (P = 4.2 × 10−6, 2.2 × 10−5 and 2.4 × 10−4, respectively). We also found that a nonsynonymous SNP at 12q24, in SH2B3, associated significantly (P = 8.6 × 10−8) with myocardial infarction in six different populations (6,650 cases and 40,621 controls).


Blood | 2008

Immunoassay for human serum hepcidin

Tomas Ganz; Gordana Olbina; Domenico Girelli; Elizabeta Nemeth; Mark Westerman

We developed and validated the first serum enzyme-linked immunosorbent assay for hepcidin, the principal iron-regulatory hormone that has been very difficult to measure. In healthy volunteers, the 5% to 95% range of hepcidin concentrations was 29 to 254 ng/mL in men (n = 65) and 17 to 286 ng/mL in women (n = 49), with median concentrations 112 versus 65 (P < .001). The lower limit of detection was 5 ng/mL. Serum hepcidin concentrations in 24 healthy subjects correlated well with their urinary hepcidin (r = 0.82). Serum hepcidin appropriately correlated with serum ferritin (r = 0.63), reflecting the regulation of both proteins by iron stores. Healthy volunteers showed a diurnal increase of serum hepcidin at noon and 8 pm compared with 8 am, and a transient rise of serum hepcidin in response to iron ingestion. Expected alterations in hepcidin levels were observed in a variety of clinical conditions associated with iron disturbances. Serum hepcidin concentrations were undetectable or low in patients with iron deficiency anemia (ferritin < 10 ng/mL), iron-depleted HFE hemochromatosis, and juvenile hemochromatosis. Serum hepcidin concentrations were high in patients with inflammation (C-reactive protein > 10 mg/dL), multiple myeloma, or chronic kidney disease. The new serum hepcidin enzyme-linked immunosorbent assay yields accurate and reproducible measurements that appropriately reflect physiologic, pathologic, and genetic influences, and is informative about the etiology of iron disorders.


The New England Journal of Medicine | 2014

Loss-of-Function Mutations in APOC3, Triglycerides, and Coronary Disease

Jacy R. Crosby; Gina M. Peloso; Paul L. Auer; David R. Crosslin; Nathan O. Stitziel; Leslie A. Lange; Yingchang Lu; Zheng-zheng Tang; He Zhang; George Hindy; Nicholas G. D. Masca; Kathleen Stirrups; Stavroula Kanoni; Ron Do; Goo Jun; Youna Hu; Hyun Min Kang; Chenyi Xue; Anuj Goel; Martin Farrall; Stefano Duga; Pier Angelica Merlini; Rosanna Asselta; Domenico Girelli; Nicola Martinelli; Wu Yin; Dermot F. Reilly; Elizabeth K. Speliotes; Caroline S. Fox; Kristian Hveem

BACKGROUND Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. METHODS We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. RESULTS An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G→A and IVS3+1G→T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P<1×10(-20)), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P=8×10(-10)). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P=4×10(-6)). CONCLUSIONS Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.).


Journal of Hypertension | 1998

Anti-oxidant status and lipid peroxidation in patients with essential hypertension.

Carla Russo; Domenico Girelli; Giovanni Faccini; Maria L. Zenari; Sara Lombardi; Roberto Corrocher

Background Lipid peroxidation and derived oxidized products are being intensively investigated, because of their potential to cause injury and their pathogenetic role in several clinically significant diseases. The view that an excess of lipid peroxidation products is present and relevant in the pathogenesis of human essential hypertension or in hypertension-induced damage has still not received definitive support. Objective To evaluate both the extent of lipoperoxidation in essential hypertensive patients and the status of enzymatic and non-enzymatic antioxidants that potentially are able to modulate it. Methods We selected 105 newly diagnosed essential hypertensives among those referred to our hypertension outpatient clinic and compared them with 100 normotensive controls matched for age. Plasma malondialdehyde was measured by high-performance liquid chromatography after reaction with thiobarbituric acid, as an end product of lipid peroxidation; serum selenium (Se), plasma copper (Cu) and zinc (Zn), vitamins A and E, erythrocyte superoxide dismutase and glutathione peroxidase levels were evaluated as indices of oxidant balance. Differences between the groups were tested by Students t test and χ2 test. Results Compared with controls, essential hypertension patients had higher malondialdehyde and glutathione peroxidase activities (P < 0.05 for both) and Zn concentrations (P < 0.001) and lower superoxide dismutase activities (P < 0.005), vitamin A (P < 0.05) and E (P < 0.001) levels and Cu concentrations (P < 0.005). We found no difference between Se levels of essential hypertensive and control subjects. Conclusions Essential hypertension is associated with greater than normal lipoperoxidation and an imbalance in anti-oxidant status, suggesting that oxidative stress is important in the pathogenesis of essential hypertension or in arterial damage related to essential hypertension.


Nature | 2015

Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction

Ron Do; Nathan O. Stitziel; Hong-Hee Won; Anders Jørgensen; Stefano Duga; Pier Angelica Merlini; Adam Kiezun; Martin Farrall; Anuj Goel; Or Zuk; Illaria Guella; Rosanna Asselta; Leslie A. Lange; Gina M. Peloso; Paul L. Auer; Domenico Girelli; Nicola Martinelli; Deborah N. Farlow; Mark A. DePristo; Robert Roberts; Alex Stewart; Danish Saleheen; John Danesh; Stephen E. Epstein; Suthesh Sivapalaratnam; G. Kees Hovingh; John J. P. Kastelein; Nilesh J. Samani; Heribert Schunkert; Jeanette Erdmann

Summary Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance1,2. When MI occurs early in life, the role of inheritance is substantially greater1. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families3–8 whereas common variants at more than 45 loci have been associated with MI risk in the population9–15. Here, we evaluate the contribution of rare mutations to MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (≤50 years in males and ≤60 years in females) along with MI-free controls. We identified two genes where rare coding-sequence mutations were more frequent in cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare, damaging mutations (3.1% of cases versus 1.3% of controls) were at 2.4-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). This sequence-based estimate of the proportion of early MI cases due to LDLR mutations is remarkably similar to an estimate made more than 40 years ago using total cholesterol16. At apolipoprotein A-V (APOA5), carriers of rare nonsynonymous mutations (1.4% of cases versus 0.6% of controls) were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase15,17 and apolipoprotein C318,19. When combined, these observations suggest that, beyond LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.


PubMed | 2011

Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies.

M. P. Reilly; Mingyao Li; Jiang He; Jane F. Ferguson; Ioannis M. Stylianou; Nehal N. Mehta; Burnett; Joe Devaney; Christopher W. Knouff; Thompson; Benjamin D. Horne; Alexandre F.R. Stewart; Themistocles L. Assimes; Philipp S. Wild; Hooman Allayee; Pl Nitschke; Riyaz S. Patel; Nicola Martinelli; Domenico Girelli; Arshed A. Quyyumi; Jeffrey L. Anderson; J. Erdmann; A. S. Hall; Heribert Schunkert; Thomas Quertermous; Stefan Blankenberg; Stanley L. Hazen; Rebecca L. Roberts; Sekar Kathiresan; Nilesh J. Samani

BACKGROUND We tested whether genetic factors distinctly contribute to either development of coronary atherosclerosis or, specifically, to myocardial infarction in existing coronary atherosclerosis. METHODS We did two genome-wide association studies (GWAS) with coronary angiographic phenotyping in participants of European ancestry. To identify loci that predispose to angiographic coronary artery disease (CAD), we compared individuals who had this disorder (n=12,393) with those who did not (controls, n=7383). To identify loci that predispose to myocardial infarction, we compared patients who had angiographic CAD and myocardial infarction (n=5783) with those who had angiographic CAD but no myocardial infarction (n=3644). FINDINGS In the comparison of patients with angiographic CAD versus controls, we identified a novel locus, ADAMTS7 (p=4·98×10(-13)). In the comparison of patients with angiographic CAD who had myocardial infarction versus those with angiographic CAD but no myocardial infarction, we identified a novel association at the ABO locus (p=7·62×10(-9)). The ABO association was attributable to the glycotransferase-deficient enzyme that encodes the ABO blood group O phenotype previously proposed to protect against myocardial infarction. INTERPRETATION Our findings indicate that specific genetic predispositions promote the development of coronary atherosclerosis whereas others lead to myocardial infarction in the presence of coronary atherosclerosis. The relation to specific CAD phenotypes might modify how novel loci are applied in personalised risk assessment and used in the development of novel therapies for CAD. FUNDING The PennCath and MedStar studies were supported by the Cardiovascular Institute of the University of Pennsylvania, by the MedStar Health Research Institute at Washington Hospital Center and by a research grant from GlaxoSmithKline. The funding and support for the other cohorts contributing to the paper are described in the webappendix.


Gastroenterology | 1998

Heterogeneity of Hemochromatosis in Italy

Alberto Piperno; Maurizio Sampietro; Antonello Pietrangelo; Cristina Arosio; Loredana Lupica; Giuliana Montosi; Anna Vergani; Mirella Fraquelli; Domenico Girelli; Paolo Pasquero; Antonella Roetto; Paolo Gasparini; Silvia Fargion; Dario Conte; Clara Camaschella

BACKGROUND & AIMS Patients with hemochromatosis show variable phenotype expression. We evaluated the frequency of hemochromatosis gene (HFE) mutations and the contribution of HFE genotype, ancestral haplotype, ethnic background, and additional factors (alcohol intake, hepatitis viruses, and beta-thalassemia trait) to the severity of iron overload in a large series of Italian patients with a hemochromatosis phenotype. METHODS HFE genotype was studied in 188 patients. Phenotype evaluation was available in 153 men and 20 women and was based mainly on iron removed. HFE genotype was determined by a polymerase chain reaction restriction assay and ancestral haplotype through D6S265 and D6S105 microsatellite analysis. RESULTS The frequency of C282Y homozygotes was 64%, with a decreasing gradient from north to south. C282Y homozygotes showed more severe iron overload than the other HFE genotypes. In the same group, ancestral haplotype was associated with a more severe phenotype. Additional factors may favor the development of a relatively mild hemochromatosis phenotype in patients nonhomozygous for the C282Y mutation. CONCLUSIONS Hemochromatosis in Italy is a nonhomogenous disorder in which genetic and acquired factors are involved. In patients with a single or no HFE mutation, further studies will enable a differentiation between true genetic disorders and interactions between genetic and acquired factors.


The New England Journal of Medicine | 2000

Polymorphisms in the factor VII gene and the risk of myocardial infarction in patients with coronary artery disease

Domenico Girelli; Carla Russo; Paolo Ferraresi; Mirko Pinotti; Simonetta Friso; Franco Manzato; Alessandro Mazzucco; Francesco Bernardi; Roberto Corrocher

BACKGROUND High plasma levels of coagulation factor VII have been suggested to be predictors of death due to coronary artery disease. Since polymorphisms in the factor VII gene contribute to variations in factor VII levels, such polymorphisms may be associated with the risk of myocardial infarction, which is precipitated by thrombosis. METHODS We studied a total of 444 patients, 311 of whom had severe, angiographically documented coronary atherosclerosis. Of these 311 patients, 175 had documentation of a previous myocardial infarction. As a control group, 133 patients with normal coronary arteriograms were also included. We measured the levels of activated factor VII and assessed three polymorphisms in the factor VII gene, one involving the promoter (A1 and A2 alleles), one involving the catalytic region (R353Q), and one involving intron 7. RESULTS Each of the polymorphisms influenced factor VII levels. Patients with the A2A2 and QQ genotypes had the lowest levels of activated factor VII (66 percent and 72 percent lower, respectively, than the levels in patients with the wild-type genotypes). The frequencies of the various genotypes in the patients free of coronary artery disease were similar to those in the entire population of patients with coronary artery disease. In the latter group, there were significantly more heterozygotes and homozygotes for the A2 and Q alleles among those who had not had a myocardial infarction than among those who had had an infarction (P=0.008 for the presence of the promoter polymorphism and P=0.01 for the presence of the R353Q polymorphism by chi-square analysis). The adjusted odds ratio for myocardial infarction among the patients with the A1A2 or RQ genotype was 0.47 (95 percent confidence interval, 0.27 to 0.81). CONCLUSIONS Our findings suggest that certain factor VII genotypes have a role in protection against myocardial infarction. This may explain why some patients do not have myocardial infarction despite the presence of severe coronary atherosclerosis.


PLOS ONE | 2008

Advances in Quantitative Hepcidin Measurements by Time-of-Flight Mass Spectrometry

Dorine W. Swinkels; Domenico Girelli; Coby M. Laarakkers; Joyce J.C. Kroot; Natascia Campostrini; Erwin H.J.M. Kemna; Harold Tjalsma

Assays for the detection of the iron regulatory hormone hepcidin in plasma or urine have not yet been widely available, whereas quantitative comparisons between hepcidin levels in these different matrices were thus far even impossible due to technical restrictions. To circumvent these limitations, we here describe several advances in time-of flight mass spectrometry (TOF MS), the most important of which concerned spiking of a synthetic hepcidin analogue as internal standard into serum and urine samples. This serves both as a control for experimental variation, such as recovery and matrix-dependent ionization and ion suppression, and at the same time allows value assignment to the measured hepcidin peak intensities. The assay improvements were clinically evaluated using samples from various patients groups and its relevance was further underscored by the significant correlation of serum hepcidin levels with serum iron indices in healthy individuals. Most importantly, this approach allowed kinetic studies as illustrated by the paired analyses of serum and urine samples, showing that more than 97% of the freely filtered serum hepcidin can be reabsorbed in the kidney. Thus, the here reported advances in TOF MS-based hepcidin measurements represent critical steps in the accurate quantification of hepcidin in various body fluids and pave the way for clinical studies on the kinetic behavior of hepcidin in both healthy and diseased states.

Collaboration


Dive into the Domenico Girelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge