Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominic Frigon is active.

Publication


Featured researches published by Dominic Frigon.


Journal of Agricultural Biological and Environmental Statistics | 2000

The Mantel Test Versus Pearson's Correlation Analysis: Assessment of the Differences for Biological and Environmental Studies

Pierre Dutilleul; Jason D. Stockwell; Dominic Frigon; Pierre Legendre

The space-time clustering procedure of Mantel was originally designed to relate a matrix of spatial distance measures and a matrix of temporal distance measures in a generalized regression approach. The procedure, known as the Mantel test in the biological and environmental sciences, includes any analysis relating two distance matrices or, more generally, two proximity matrices. In this paper, we discuss the extent to which a Mantel type of analysis between two proximity matrices agrees with Pearsons correlation analysis when both methods are applicable (i.e., the raw data used to calculate proximities are available). First, we demonstrate that the Mantel test and Pearsons correlation analysis should lead to a similar decision regarding their respective null hypothesis when squared Euclidean distances are used in the Mantel test and the raw bivariate data are normally distributed. Then we use fish and zooplankton biomass data from Lake Erie (North American Great Lakes) to show that Pearsons correlation statistic may be nonsignificant while the Mantel statistic calculated on nonsquared Euclidean distances is significant. After small-size artificial examples, seven bivariate distributional models are tried to simulate data reproducing the difference between analyses, among which three do reproduce it. These results and some extensions are discussed. In conclusion, particular attention must be paid whenever relations established between proximities are backtransposed to raw data, especially when these may display patterns described in the body of this paper.


Applied and Environmental Microbiology | 2013

Biological and Physicochemical Wastewater Treatment Processes Reduce the Prevalence of Virulent Escherichia coli

Dominic Frigon; Basanta Kumar Biswal; Alberto Mazza; Luke Masson; Ronald Gehr

ABSTRACT Effluents discharged from wastewater treatment plants are possible sources of pathogenic bacteria, including Escherichia coli, in the freshwater environment, and determining the possible selection of pathogens is important. This study evaluated the impact of activated sludge and physicochemical wastewater treatment processes on the prevalence of potentially virulent E. coli. A total of 719 E. coli isolates collected from four municipal plants in Québec before and after treatment were characterized by using a customized DNA microarray to determine the impact of treatment processes on the frequency of specific pathotypes and virulence genes. The percentages of potentially pathogenic E. coli isolates in the plant influents varied between 26 and 51%, and in the effluents, the percentages were 14 to 31%, for a reduction observed at all plants ranging between 14 and 45%. Pathotypes associated with extraintestinal pathogenic E. coli (ExPEC) were the most abundant at three of the four plants and represented 24% of all isolates, while intestinal pathogenic E. coli pathotypes (IPEC) represented 10% of the isolates. At the plant where ExPEC isolates were not the most abundant, a large number of isolates were classified as both ExPEC and IPEC; overall, 6% of the isolates were classified in both groups, with the majority being from the same plant. The reduction of the proportion of pathogenic E. coli could not be explained by the preferential loss of one virulence gene or one type of virulence factor; however, the quinolone resistance gene (qnrS) appears to enhance the loss of virulence genes, suggesting a mechanism involving the loss of pathogenicity islands.


Water Research | 2014

Impact of wastewater treatment processes on antimicrobial resistance genes and their co-occurrence with virulence genes in Escherichia coli

Basanta Kumar Biswal; Alberto Mazza; Luke Masson; Ronald Gehr; Dominic Frigon

An increase in the frequency of antimicrobial resistance genes (ARGs) in bacteria including Escherichia coli could be a threat to public health. This study investigated the impact of activated sludge and physicochemical wastewater treatment processes on the prevalence of ARGs in E. coli isolates. In total, 719 E. coli were isolated from the influent and effluent (prior to disinfection) of two activated sludge and two physicochemical municipal treatment plants, and genotyped using DNA microarrays. Changes in the abundance of ARGs in the E. coli population were different for the two treatment processes. Activated sludge treatment did not change the prevalence of ARG-possessing E. coli but increased the abundance of ARGs in the E. coli genome while physicochemical treatment reduced both the prevalence of ARG-carrying E. coli as well as the frequency of ARGs in the E. coli genome. Most E. coli isolates from the four treatment plants possessed ARGs of multiple antimicrobial classes, mainly aminoglycoside, β-lactams, quinolone and tetracyclines. In addition these isolates harboured DNA insertion sequence elements including integrase and transposase. A significant positive association was found between the occurrence of ARGs and virulence genotypes.


Chemosphere | 2013

Biodegradation of petroleum hydrocarbons in contaminated clayey soils from a sub-arctic site: The role of aggregate size and microstructure

Wonjae Chang; Ali Akbari; Jessica Snelgrove; Dominic Frigon; Subhasis Ghoshal

This study investigates the extent of biodegradation of non-volatile petroleum hydrocarbons (C16-C34) and the associated microbial activity in predominant aggregate sizes during a pilot-scale biopile experiment conducted at 15 °C, with a clayey soil, from a crude oil-impacted site in northern Canada. The in situ aggregate microstructure was characterized by N2 adsorption and X-ray CT scanning. The soils in the nutrient (N)-amended and unamended biopile tanks were comprised of macroaggregates (>2 mm) and mesoaggregates (0.25-2 mm). Nutrient addition significantly enhanced petroleum hydrocarbon biodegradation in macroaggregates, but not in mesoaggregates. At the end of 65-d biopile experiment, 42% of the C16-C34 hydrocarbons were degraded in the nutrient-amended macroaggregates, compared to 13% in the mesoaggregates. Higher microbial activity in the macroaggregates of the nutrient amended biopile was inferred from a larger increase in extractable protein concentrations, compared to the other aggregates. Terminal Restriction Fragment Length Polymorphism (T-RFLP) of 16S rRNA genes showed that there was no selection of bacterial populations in any of the aggregates during biopile treatment, suggesting that the enhanced biodegradation in nutrient-amended macroaggregates was likely due to metabolic stimulation. X-ray micro CT scanning revealed that the number of pores wider than 4 μm, which would be easily accessible by bacteria, were an order of magnitude higher in macroaggregates. Also, N2 adsorption analyses showed that pore surface areas and pore volumes per unit weight were four to five-times larger, compared to the mesoaggregates. Thus the higher porosity microstructure in macroaggregates allowed greater hydrocarbon degradation upon biostimulation by nutrient addition and aeration.


Water Research | 2012

Inactivation mechanisms of bacterial pathogen indicators during electro-dewatering of activated sludge biosolids.

Tala Navab Daneshmand; Raphaël Beton; Reghan J. Hill; Ronald Gehr; Dominic Frigon

Electro-dewatering is an energy-efficient technology in which an electric field can increase the dryness of biosolids from secondary wastewater treatment from 15% w/w to 30-50% w/w. Here, we address bacterial pathogen indicators inactivation (total coliforms, Escherichia coli and aerobic endospores) during electro-dewatering, investigating the roles of electrochemically generated oxidants, extreme pH, and high temperature (from Joule heating). Our results demonstrate that temperature is the primary factor affecting total coliforms and E. coli inactivation. First, several electro-dewatering cycles were used to increase sludge temperature to about 100 °C after 6 min, during which time the average pH decreased from 7 to 3.6 after 10 min. Total coliforms and E. coli MPNs reached their detection limits after 6 min (with 4-5 logs of inactivation for total coliforms and 3-4 logs for E. coli). In contrast, aerobic endospores were not inactivated under these conditions; rather, their germination appeared to be stimulated by 6-8 min of electro-dewatering. Second, the dewatering cake was separated into four horizontal layers. After 8 min of electro-dewatering, the pH in the top layers decreased to 3, whereas the pH in the bottom layers increased to 8. Inactivation of total coliforms and E. coli in the sludge cake was similar in all layers, increasing with time, suggesting that oxidants and extreme pH are secondary inactivation factors. Finally, electrodes were cooled to maintain a temperature less than 34 °C. Although pH decreased significantly after 12 min of electro-dewatering, there was no significant bacterial pathogen indicator inactivation at low temperature.


Applied and Environmental Microbiology | 2006

rRNA and Poly-β-Hydroxybutyrate Dynamics in Bioreactors Subjected to Feast and Famine Cycles

Dominic Frigon; Gerard Muyzer; Mark C.M. van Loosdrecht; Lutgarde Raskin

ABSTRACT Feast and famine cycles are common in activated sludge wastewater treatment systems, and they select for bacteria that accumulate storage compounds, such as poly-β-hydroxybutyrate (PHB). Previous studies have shown that variations in influent substrate concentrations force bacteria to accumulate high levels of rRNA compared to the levels in bacteria grown in chemostats. Therefore, it can be hypothesized that bacteria accumulate more rRNA when they are subjected to feast and famine cycles. However, PHB-accumulating bacteria can form biomass (grow) throughout a feast and famine cycle and thus have a lower peak biomass formation rate during the cycle. Consequently, PHB-accumulating bacteria may accumulate less rRNA when they are subjected to feast and famine cycles than bacteria that are not capable of PHB accumulation. These hypotheses were tested with Wautersia eutropha H16 (wild type) and W. eutropha PHB-4 (a mutant not capable of accumulating PHB) grown in chemostat and semibatch reactors. For both strains, the cellular RNA level was higher when the organism was grown in semibatch reactors than when it was grown in chemostats, and the specific biomass formation rates during the feast phase were linearly related to the cellular RNA levels for cultures. Although the two strains exhibited maximum uptake rates when they were grown in semibatch reactors, the wild-type strain responded much more rapidly to the addition of fresh medium than the mutant responded. Furthermore, the chemostat-grown mutant culture was unable to exhibit maximum substrate uptake rates when it was subjected to pulse-wise addition of fresh medium. These data show that the ability to accumulate PHB does not prevent bacteria from accumulating high levels of rRNA when they are subjected to feast and famine cycles. Our results also demonstrate that the ability to accumulate PHB makes the bacteria more responsive to sudden increases in substrate concentrations, which explains their ecological advantage.


Environmental Science & Technology | 2015

Impact of Joule Heating and pH on Biosolids Electro-Dewatering.

Tala Navab-Daneshmand; Raphaël Beton; Reghan J. Hill; Dominic Frigon

Electro-dewatering (ED) is a novel technology to reduce the overall costs of residual biosolids processing, transport, and disposal. In this study, we investigated Joule heating and pH as parameters controlling the dewaterability limit, dewatering rate, and energy efficiency. Temperature-controlled electrodes revealed that Joule heating enhances water removal by increasing evaporation and electro-osmotic flow. High temperatures increased the dewatering rate, but had little impact on the dewaterability limit and energy efficiency. Analysis of horizontal layers after 15-min ED suggests electro-osmotic flow reversal, as evidenced by a shifting of the point of minimum moisture content from the anode toward the cathode. This flow reversal was also confirmed by the pH at the anode being below the isoelectric point, as ascertained by pH titration. The important role of pH on ED was further studied by adding acid/base solutions to biosolids prior to ED. An acidic pH reduced the biosolids charge while simultaneously increasing the dewatering efficiency. Thus, process optimization depends on trade-offs between speed and efficiency, according to physicochemical properties of the biosolids microstructure.


Applied and Environmental Microbiology | 2014

Impact of UV and Peracetic Acid Disinfection on the Prevalence of Virulence and Antimicrobial Resistance Genes in Uropathogenic Escherichia coli in Wastewater Effluents

Basanta Kumar Biswal; Ramzi Khairallah; Kareem Bibi; Alberto Mazza; Ronald Gehr; Luke Masson; Dominic Frigon

ABSTRACT Wastewater discharges may increase the populations of pathogens, including Escherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli (UPEC), the most abundant E. coli pathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766 E. coli isolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2 and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.


Water Science and Technology | 2011

Evaluation of a new model for the reduction of excess sludge production by ozonation of return activated sludge: what solids COD fraction is affected?

Dominic Frigon; Siavash Isazadeh

This paper aims at clarifying the effect of ozone on the RAS solids to model activated sludge systems equipped with RAS-ozonation processes for the reduction of sludge production. A common hypothesis is that ozone only affects active biomass by promoting cryptic growth. Data from a pilot-scale study were used to test this and two other model extensions to IWA-ASM3. All model extensions were able to simulate the observed linear reduction in sludge production with increasing ozone dose when the MLVSS are kept constant. However, model simulations showed the inconsistency of the cryptic growth hypothesis with the extent of sludge reduction. The second tested model extensions assumes that ozone affects all the solids fractions (active biomass, endogenous residue, and influent inert particulate COD) equally. This extension could properly simulate the observed sludge reduction, but it failed to predict the trends in effluent BOD₅, ATP/VSS, and nitrification rates. A third tested model extension, which performed better, assumes that biomass is inactivated at a specific rate higher than the specific rate of transformation by ozone of the other solids fractions. Finally, the predictions from this model extension were most accurate if either (i) the nitrifiers were inactivated at a lower rate then heterotrophs, (ii) the nitrifiers model parameters (e.g., maximum growth rate) were changed under ozone (i.e., metabolic adaptation, (iii) or both.


Journal of Hazardous Materials | 2014

New mechanistically based model for predicting reduction of biosolids waste by ozonation of return activated sludge

Siavash Isazadeh; Min Feng; Luis Enrique Urbina Rivas; Dominic Frigon

Two pilot-scale activated sludge reactors were operated for 98 days to provide the necessary data to develop and validate a new mathematical model predicting the reduction of biosolids production by ozonation of the return activated sludge (RAS). Three ozone doses were tested during the study. In addition to the pilot-scale study, laboratory-scale experiments were conducted with mixed liquor suspended solids and with pure cultures to parameterize the biomass inactivation process during exposure to ozone. The experiments revealed that biomass inactivation occurred even at the lowest doses, but that it was not associated with extensive COD solubilization. For validation, the model was used to simulate the temporal dynamics of the pilot-scale operational data. Increasing the description accuracy of the inactivation process improved the precision of the model in predicting the operational data.

Collaboration


Dive into the Dominic Frigon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Mazza

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke Masson

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge