Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominic J. Withers is active.

Publication


Featured researches published by Dominic J. Withers.


Science | 2009

Ribosomal Protein S6 Kinase 1 Signaling Regulates Mammalian Life Span

Colin Selman; Jennifer M. A. Tullet; Daniela Wieser; Elaine E. Irvine; Steven Lingard; Agharul I. Choudhury; Marc Claret; Hind Al-Qassab; Danielle Carmignac; Faruk Ramadani; Angela Woods; Iain C. A. F. Robinson; Eugene Schuster; Rachel L. Batterham; Sara C. Kozma; George Thomas; David Carling; Klaus Okkenhaug; Janet M. Thornton; Linda Partridge; David Gems; Dominic J. Withers

Mimicking Caloric Restriction The extended life span and resistance to age-related diseases in animals exposed to caloric restriction has focused attention on the biochemical mechanisms that produce these effects. Selman et al. (p. 140; see the Perspective by Kaeberlein and Kapahi) explored the role of the mammalian ribosomal protein S6 kinase 1 (S6K1), which regulates protein translation and cellular energy metabolism. Female knockout mice lacking expression of S6K1 showed characteristics of animals exposed to caloric restriction, including improved health and increased longevity. The beneficial effects included reduced fat mass in spite of increased food intake. Thus, inhibition of signaling pathways activated by S6K1 might prove beneficial in protecting against age-related disease. A signaling pathway in mice mediates the effects of caloric restriction that protect against age-related diseases. Caloric restriction (CR) protects against aging and disease, but the mechanisms by which this affects mammalian life span are unclear. We show in mice that deletion of ribosomal S6 protein kinase 1 (S6K1), a component of the nutrient-responsive mTOR (mammalian target of rapamycin) signaling pathway, led to increased life span and resistance to age-related pathologies, such as bone, immune, and motor dysfunction and loss of insulin sensitivity. Deletion of S6K1 induced gene expression patterns similar to those seen in CR or with pharmacological activation of adenosine monophosphate (AMP)–activated protein kinase (AMPK), a conserved regulator of the metabolic response to CR. Our results demonstrate that S6K1 influences healthy mammalian life-span and suggest that therapeutic manipulation of S6K1 and AMPK might mimic CR and could provide broad protection against diseases of aging.


Journal of Clinical Investigation | 2000

Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2

Yoshiaki Kido; Deborah J. Burks; Dominic J. Withers; Jens C. Brüning; C. Ronald Kahn; Morris F. White; Domenico Accili

Type 2 diabetes is characterized by abnormalities of insulin action in muscle, adipose tissue, and liver and by altered beta-cell function. To analyze the role of the insulin signaling pathway in these processes, we have generated mice with combined heterozygous null mutations in insulin receptor (ir), insulin receptor substrate (irs-1), and/or irs-2. Diabetes developed in 40% of ir/irs-1/irs-2(+/-), 20% of ir/irs-1(+/-), 17% of ir/irs-2(+/-), and 5% of ir(+/-) mice. Although combined heterozygosity for ir/irs-1(+/-) and ir/irs-2(+/-) results in a similar number of diabetic mice, there are significant differences in the underlying metabolic abnormalities. ir/irs-1(+/-) mice develop severe insulin resistance in skeletal muscle and liver, with compensatory beta-cell hyperplasia. In contrast, ir/irs-2(+/-) mice develop severe insulin resistance in liver, mild insulin resistance in skeletal muscle, and modest beta-cell hyperplasia. Triple heterozygotes develop severe insulin resistance in skeletal muscle and liver and marked beta-cell hyperplasia. These data indicate tissue-specific differences in the roles of IRSs to mediate insulin action, with irs-1 playing a prominent role in skeletal muscle and irs-2 in liver. They also provide a practical demonstration of the polygenic and genetically heterogeneous interactions underlying the inheritance of type 2 diabetes.


The FASEB Journal | 2008

Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice

Colin Selman; Steven Lingard; Agharul I. Choudhury; Rachel L. Batterham; Marc Claret; Melanie Clements; Faruk Ramadani; Klaus Okkenhaug; Eugene Schuster; Eric Blanc; Matthew D.W. Piper; Hind Al-Qassab; John R. Speakman; Danielle Carmignac; Iain Caf Robinson; Janet M. Thornton; David Gems; Linda Partridge; Dominic J. Withers

Recent evidence suggests that alterations in insulin/insulin–like growth factor 1 (IGF1) signaling (IIS) can increase mammalian life span. For example, in several mouse mutants, impairment of the growth hormone (GH)/IGF1 axis increases life span and also insulin sensitivity. However, the intracellular signaling route to altered mammalian aging remains unclear. We therefore measured the life span of mice lacking either insulin receptor substrate (IRS) 1 or 2, the major intracellular effectors of the IIS receptors. Our provisional results indicate that female Irs1–/– mice are long–lived. Furthermore, they displayed resistance to a range of age–sensitive markers of aging including skin, bone, immune, and motor dysfunction. These improvements in health were seen despite mild, lifelong insulin resistance. Thus, enhanced insulin sensitivity is not a prerequisite for IIS mutant longevity. Irs1–/– female mice also displayed normal anterior pituitary function, distinguishing them from long–lived somatotrophic axis mutants. In contrast, Irs2–/– mice were short–lived, whereas Irs1–/– and Irs2+/– mice of both sexes showed normal life spans. Our results therefore suggest that IRS1 signaling is an evolutionarily conserved pathway regulating mammalian life span and may be a point of intervention for therapies with the potential to delay age–related processes.—Selman, C., Lingard, S., Choudhury, A. I., Batterham, A. L., Claret, M., Clements, M., Ramadani, F., Okkenhaug, K., Schuster, E., Blanc, E., Piper, M. D., Al‐Qassab, H., Speakman, J. R., Carmignac, D., Robinson, I. C. A., Thornton, J. M., Gems, D., Partridge, L., Withers, D. J. Evidence for lifespan extension and delayed age‐related biomarkers in insulin receptor substrate 1 null mice. FASEB J. 22, 807–818 (2008)


Nature | 2000

IRS-2 pathways integrate female reproduction and energy homeostasis

Deborah J. Burks; Jaime Font de Mora; Markus Schubert; Dominic J. Withers; Martin G. Myers; Heather Towery; Shari L. Altamuro; Carrie L. Flint; Morris F. White

Severe dietary restriction, catabolic states and even short-term caloric deprivation impair fertility in mammals. Likewise, obesity is associated with infertile conditions such as polycystic ovary syndrome. The reproductive status of lower organisms such as Caenorhabditis elegans is also modulated by availability of nutrients. Thus, fertility requires the integration of reproductive and metabolic signals. Here we show that deletion of insulin receptor substrate-2 (IRS-2), a component of the insulin/insulin-like growth factor-1 signalling cascade, causes female infertility. Mice lacking IRS-2 have small, anovulatory ovaries with reduced numbers of follicles. Plasma concentrations of luteinizing hormone, prolactin and sex steroids are low in these animals. Pituitaries are decreased in size and contain reduced numbers of gonadotrophs. Females lacking IRS-2 have increased food intake and obesity, despite elevated levels of leptin. Our findings indicate that insulin, together with leptin and other neuropeptides, may modulate hypothalamic control of appetite and reproductive endocrinology. Coupled with findings on the role of insulin-signalling pathways in the regulation of fertility, metabolism and longevity in C. elegans and Drosophila, we have identified an evolutionarily conserved mechanism in mammals that regulates both reproduction and energy homeostasis.


Journal of Clinical Investigation | 2007

AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons

Marc Claret; Mark A. Smith; Rachel L. Batterham; Colin Selman; Agharul I. Choudhury; Lee G. D. Fryer; Melanie Clements; Hind Al-Qassab; Helen Heffron; Allison W. Xu; John R. Speakman; Gregory S. Barsh; Benoit Viollet; Sophie Vaulont; Michael L.J. Ashford; David Carling; Dominic J. Withers

Hypothalamic AMP-activated protein kinase (AMPK) has been suggested to act as a key sensing mechanism, responding to hormones and nutrients in the regulation of energy homeostasis. However, the precise neuronal populations and cellular mechanisms involved are unclear. The effects of long-term manipulation of hypothalamic AMPK on energy balance are also unknown. To directly address such issues, we generated POMC alpha 2KO and AgRP alpha 2KO mice lacking AMPK alpha2 in proopiomelanocortin- (POMC-) and agouti-related protein-expressing (AgRP-expressing) neurons, key regulators of energy homeostasis. POMC alpha 2KO mice developed obesity due to reduced energy expenditure and dysregulated food intake but remained sensitive to leptin. In contrast, AgRP alpha 2KO mice developed an age-dependent lean phenotype with increased sensitivity to a melanocortin agonist. Electrophysiological studies in AMPK alpha2-deficient POMC or AgRP neurons revealed normal leptin or insulin action but absent responses to alterations in extracellular glucose levels, showing that glucose-sensing signaling mechanisms in these neurons are distinct from those pathways utilized by leptin or insulin. Taken together with the divergent phenotypes of POMC alpha 2KO and AgRP alpha 2KO mice, our findings suggest that while AMPK plays a key role in hypothalamic function, it does not act as a general sensor and integrator of energy homeostasis in the mediobasal hypothalamus.


Nature | 2006

Critical role for the p110α phosphoinositide-3-OH kinase in growth and metabolic regulation

Lazaros C. Foukas; Marc Claret; Wayne Pearce; Klaus Okkenhaug; Stephen Meek; Emma Peskett; Sara Sancho; Andrew Smith; Dominic J. Withers; Bart Vanhaesebroeck

The eight catalytic subunits of the mammalian phosphoinositide-3-OH kinase (PI(3)K) family form the backbone of an evolutionarily conserved signalling pathway; however, the roles of most PI(3)K isoforms in organismal physiology and disease are unknown. To delineate the role of p110α, a ubiquitously expressed PI(3)K involved in tyrosine kinase and Ras signalling, here we generated mice carrying a knockin mutation (D933A) that abrogates p110α kinase activity. Homozygosity for this kinase-dead p110α led to embryonic lethality. Mice heterozygous for this mutation were viable and fertile, but displayed severely blunted signalling via insulin-receptor substrate (IRS) proteins, key mediators of insulin, insulin-like growth factor-1 and leptin action. Defective responsiveness to these hormones led to reduced somatic growth, hyperinsulinaemia, glucose intolerance, hyperphagia and increased adiposity in mice heterozygous for the D933A mutation. This signalling function of p110α derives from its highly selective recruitment and activation to IRS signalling complexes compared to p110β, the other broadly expressed PI(3)K isoform, which did not contribute to IRS-associated PI(3)K activity. p110α was the principal IRS-associated PI(3)K in cancer cell lines. These findings demonstrate a critical role for p110α in growth factor and metabolic signalling and also suggest an explanation for selective mutation or overexpression of p110α in a variety of cancers.


Nature | 2007

PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans.

Rachel L. Batterham; Dominic H. ffytche; J. Miranda Rosenthal; Fernando Zelaya; Gareth J. Barker; Dominic J. Withers; Steven Williams

The ability to maintain adequate nutrient intake is critical for survival. Complex interrelated neuronal circuits have developed in the mammalian brain to regulate many aspects of feeding behaviour, from food-seeking to meal termination. The hypothalamus and brainstem are thought to be the principal homeostatic brain areas responsible for regulating body weight. However, in the current ‘obesogenic’ human environment food intake is largely determined by non-homeostatic factors including cognition, emotion and reward, which are primarily processed in corticolimbic and higher cortical brain regions. Although the pleasure of eating is modulated by satiety and food deprivation increases the reward value of food, there is currently no adequate neurobiological account of this interaction between homeostatic and higher centres in the regulation of food intake in humans. Here we show, using functional magnetic resonance imaging, that peptide YY3–36 (PYY), a physiological gut-derived satiety signal, modulates neural activity within both corticolimbic and higher-cortical areas as well as homeostatic brain regions. Under conditions of high plasma PYY concentrations, mimicking the fed state, changes in neural activity within the caudolateral orbital frontal cortex predict feeding behaviour independently of meal-related sensory experiences. In contrast, in conditions of low levels of PYY, hypothalamic activation predicts food intake. Thus, the presence of a postprandial satiety factor switches food intake regulation from a homeostatic to a hedonic, corticolimbic area. Our studies give insights into the neural networks in humans that respond to a specific satiety signal to regulate food intake. An increased understanding of how such homeostatic and higher brain functions are integrated may pave the way for the development of new treatment strategies for obesity.


Cell | 2005

Sex and Death: What Is the Connection?

Linda Partridge; David Gems; Dominic J. Withers

A cost of reproduction, where lifespan and fecundity are negatively correlated, is of widespread occurrence. Mutations in insulin/IGF signaling (IIS) pathways and dietary restriction (DR) can extend lifespan in model organisms but do not always reduce fecundity, suggesting that the link between lifespan and fecundity is not inevitable. Understanding the molecular basis of the cost of reproduction will be informed by elucidation of the mechanisms by which DR and IIS affect these two traits.


Journal of Clinical Investigation | 1997

Leptin rapidly suppresses insulin release from insulinoma cells, rat and human islets and, in vivo, in mice.

Rohit N. Kulkarni; Zhi-Li Wang; Ren-Ming Wang; James D. Hurley; David M. Smith; Mohammad A. Ghatei; Dominic J. Withers; James Gardiner; Cliff J. Bailey; S. R. Bloom

Obesity is associated with diabetes, and leptin is known to be elevated in obesity. To investigate whether leptin has a direct effect on insulin secretion, isolated rat and human islets and cultured insulinoma cells were studied. In all cases, mouse leptin inhibited insulin secretion at concentrations within the plasma range reported in humans. Insulin mRNA expression was also suppressed in the cultured cells and rat islets. The long form of the leptin receptor (OB-Rb) mRNA was present in the islets and insulinoma cell lines. To determine the significance of these findings in vivo, normal fed mice were injected with two doses of leptin. A significant decrease in plasma insulin and associated rise in glucose concentration were observed. Fasted normal and leptin receptor-deficient db/db mice showed no response to leptin. A dose of leptin, which mimicked that found in normal mice, was administered to leptin-deficient, hyperinsulinemic ob/ob mice. This caused a marked lowering of plasma insulin concentration and a doubling of plasma glucose. Thus, leptin has a powerful acute inhibitory effect on insulin secretion. These results suggest that the action of leptin may be one mechanism by which excess adipose tissue could acutely impair carbohydrate metabolism.


Journal of Clinical Investigation | 2005

The role of insulin receptor substrate 2 in hypothalamic and β cell function

Agharul I. Choudhury; Helen Heffron; Mark A. Smith; Hind Al-Qassab; Allison W. Xu; Colin Selman; Marcus Simmgen; Melanie Clements; Marc Claret; Gavin MacColl; David C. Bedford; Kazunari Hisadome; Ivan Diakonov; Vazira Moosajee; Jimmy D. Bell; John R. Speakman; Rachel L. Batterham; Gregory S. Barsh; Michael L.J. Ashford; Dominic J. Withers

Insulin receptor substrate 2 (Irs2) plays complex roles in energy homeostasis. We generated mice lacking Irs2 in β cells and a population of hypothalamic neurons (RIPCreIrs2KO), in all neurons (NesCreIrs2KO), and in proopiomelanocortin neurons (POMCCreIrs2KO) to determine the role of Irs2 in the CNS and β cell. RIPCreIrs2KO mice displayed impaired glucose tolerance and reduced β cell mass. Overt diabetes did not ensue, because β cells escaping Cre-mediated recombination progressively populated islets. RIPCreIrs2KO and NesCreIrs2KO mice displayed hyperphagia, obesity, and increased body length, which suggests altered melanocortin action. POMCCreIrs2KO mice did not display this phenotype. RIPCreIrs2KO and NesCreIrs2KO mice retained leptin sensitivity, which suggests that CNS Irs2 pathways are not required for leptin action. NesCreIrs2KO and POMCCreIrs2KO mice did not display reduced β cell mass, but NesCreIrs2KO mice displayed mild abnormalities of glucose homeostasis. RIPCre neurons did not express POMC or neuropeptide Y. Insulin and a melanocortin agonist depolarized RIPCre neurons, whereas leptin was ineffective. Insulin hyperpolarized and leptin depolarized POMC neurons. Our findings demonstrate a critical role for IRS2 in β cell and hypothalamic function and provide insights into the role of RIPCre neurons, a distinct hypothalamic neuronal population, in growth and energy homeostasis.

Collaboration


Dive into the Dominic J. Withers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hind Al-Qassab

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven Lingard

University College London

View shared research outputs
Top Co-Authors

Avatar

Helen Heffron

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge