Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominic Thewlis is active.

Publication


Featured researches published by Dominic Thewlis.


Neurorehabilitation and Neural Repair | 2015

Assessing proprioception: a systematic review of possibilities

Susan Hillier; Maarten A. Immink; Dominic Thewlis

Proprioception is a vital aspect of motor control and when degraded or lost can have a profound impact on function in diverse clinical populations. This systematic review aimed to identify clinically related tools to measure proprioceptive acuity, to classify the construct(s) underpinning the tools, and to report on the clinimetric properties of the tools. We searched key databases with the pertinent search terms, and from an initial list of 935 articles, we identified 57 of relevance. These articles described 32 different tools or methods to quantify proprioception. There was wide variation in methods, the joints able to be tested, and the populations sampled. The predominant construct was active or passive joint position detection, followed by passive motion detection and motion direction discrimination. The clinimetric properties were mostly poorly evaluated or reported. The Rivermead Assessment of Somatosensory Perception was generally considered to be a valid and reliable tool but with low precision; other tools with higher precision are potentially not clinically feasible. Clinicians and clinical researchers can use the summary tables to make more informed decisions about which tool to use to match their predominant requirements. Further discussion and research is needed to produce measures of proprioception that have improved validity and utility.


Gait & Posture | 2014

Differences in foot kinematics between young and older adults during walking

John B. Arnold; Shylie Mackintosh; Sara Jones; Dominic Thewlis

Our understanding of age-related changes to foot function during walking has mainly been based on plantar pressure measurements, with little information on differences in foot kinematics between young and older adults. The purpose of this study was to investigate the differences in foot kinematics between young and older adults during walking using a multi-segment foot model. Joint kinematics of the foot and ankle for 20 young (mean age 23.2 years, standard deviation (SD) 3.0) and 20 older adults (mean age 73.2 years, SD 5.1) were quantified during walking with a 12 camera Vicon motion analysis system using a five segment kinematic model. Differences in kinematics were compared between older adults and young adults (preferred and slow walking speeds) using Students t-tests or if indicated, Mann-Whitney U tests. Effect sizes (Cohens d) for the differences were also computed. The older adults had a less plantarflexed calcaneus at toe-off (-9.6° vs. -16.1°, d = 1.0, p = <0.001), a smaller sagittal plane range of motion (ROM) of the midfoot (11.9° vs. 14.8°, d = 1.3, p = <0.001) and smaller coronal plane ROM of the metatarsus (3.2° vs. 4.3°, d = 1.1, p = 0.006) compared to the young adults. Walking speed did not influence these differences, as they remained present when groups walked at comparable speeds. The findings of this study indicate that independent of walking speed, older adults exhibit significant differences in foot kinematics compared to younger adults, characterised by less propulsion and reduced mobility of multiple foot segments.


Gait & Posture | 2009

A clinical study of the biomechanics of step descent using different treatment modalities for patellofemoral pain

James Selfe; Dominic Thewlis; Stephen W. Hill; Jonathan Whitaker; Carley Sutton; Jim Richards

INTRODUCTION In the previous study we have demonstrated that in healthy subjects significant changes in coronal and transverse plane mechanics can be produced by the application of a neutral patella taping technique and a patellar brace. Recently it has also been identified that patients with patellofemoral pain syndrome (PFPS) display alterations in gait in the coronal and transverse planes. OBJECTIVE This study investigated the effect of patellar bracing and taping on the three-dimensional mechanics of the knee of patellofemoral pain patients during a step descent task. METHOD Thirteen patients diagnosed with patellofemoral pain syndrome performed a slow step descent. This was conducted under three randomized conditions: (a) no intervention, (b) neutral patella taping, (c) patellofemoral bracing. A 20cm step was constructed to accommodate an AMTI force platform. Kinematic data were collected using a ten camera infra-red Oqus motion analysis system. Reflective markers were placed on the foot, shank and thigh using the Calibrated Anatomical System Technique (CAST). RESULTS The coronal plane knee range of motion was significantly reduced with taping (P=0.031) and bracing (P=0.005). The transverse plane showed a significant reduction in the knee range of motion with the brace compared to taping (P=0.032) and no treatment (P=0.046). CONCLUSION Patients suffering from patellofemoral pain syndrome demonstrated improved coronal plane and torsional control of the knee during slow step descent following the application of bracing and taping. This study further reinforces the view that coronal and transverse plane mechanics should not be overlooked when studying patellofemoral pain.


Journal of Foot and Ankle Research | 2014

Foot orthoses for adults with flexible pes planus: a systematic review

Helen A Banwell; Shylie Mackintosh; Dominic Thewlis

BackgroundFoot orthoses are widely used in the management of flexible pes planus, yet the evidence to support this intervention has not been clearly defined. This systematic review aimed to critically appraise the evidence for the use of foot orthoses for flexible pes planus in adults.MethodsElectronic databases (Medline, CINAHL, Cochrane, Web of science, SportDiscus, Embase) were systematically searched in June 2013 for randomised controlled, controlled clinical and repeated measure trials where participants had identified flexible pes planus using a validated and reliable measure of pes planus and the intervention was a rigid or semi-rigid orthoses with the comparison being a no-orthoses (shoes alone or flat non-posted insert) condition. Outcomes of interest were foot pain, rearfoot kinematics, foot kinetics and physical function.ResultsOf the 2,211 articles identified by the searches, 13 studies met the inclusion criteria; two were randomised controlled trials, one was a controlled trial and 10 were repeated measure studies. Across the included studies, 59 relevant outcome measures were reported with 17 calculated as statistically significant large or medium effects observed with use of foot orthoses compared to the no orthoses condition (SMD range 1.13 to -4.11).ConclusionsNo high level evidence supported the use of foot orthoses for flexible pes planus. There is good to moderate level evidence that foot orthoses improve physical function (medial-lateral sway in standing (level II) and energy cost during walking (level III)). There is low level evidence (level IV) that foot orthoses improve pain, reduce rearfoot eversion, alter loading and impact forces; and reduce rearfoot inversion and eversion moments in flexible pes planus. Well-designed randomised controlled trials that include appropriate sample sizes, clinical cohorts and involve a measure of symptom change are required to determine the efficacy of foot orthoses to manage adult flexible pes planus.


Journal of Biomechanics | 2012

Recommendations for the reporting of foot and ankle models

Chris Bishop; Gunther Paul; Dominic Thewlis

Multiple marker sets and models are currently available for assessing foot and ankle kinematics in gait. Despite the presence of such a wide variety of models, the reporting of methodological designs remains inconsistent and lacks clearly defined standards. This review highlights the variability found when reporting biomechanical model parameters, methodological design, and model reliability. Further, the review clearly demonstrates the need for a consensus of what methodological considerations to report in manuscripts, which focus on the topic of foot and ankle biomechanics. We propose five minimum reporting standards, that we believe will ensure the transparency of methods and begin to allow the community to move towards standard modelling practice. The strict adherence to these standards should ultimately improve the interpretation and clinical useability of foot and ankle marker sets and their corresponding models.


Gait & Posture | 2013

The reliability, accuracy and minimal detectable difference of a multi-segment kinematic model of the foot-shoe complex.

Chris Bishop; Gunther Paul; Dominic Thewlis

Kinematic models are commonly used to quantify foot and ankle kinematics, yet no marker sets or models have been proven reliable or accurate when wearing shoes. Further, the minimal detectable difference of a developed model is often not reported. We present a kinematic model that is reliable, accurate and sensitive to describe the kinematics of the foot-shoe complex and lower leg during walking gait. In order to achieve this, a new marker set was established, consisting of 25 markers applied on the shoe and skin surface, which informed a four segment kinematic model of the foot-shoe complex and lower leg. Three independent experiments were conducted to determine the reliability, accuracy and minimal detectable difference of the marker set and model. Inter-rater reliability of marker placement on the shoe was proven to be good to excellent (ICC=0.75-0.98) indicating that markers could be applied reliably between raters. Intra-rater reliability was better for the experienced rater (ICC=0.68-0.99) than the inexperienced rater (ICC=0.38-0.97). The accuracy of marker placement along each axis was <6.7 mm for all markers studied. Minimal detectable difference (MDD90) thresholds were defined for each joint; tibiocalcaneal joint--MDD90=2.17-9.36°, tarsometatarsal joint--MDD90=1.03-9.29° and the metatarsophalangeal joint--MDD90=1.75-9.12°. These thresholds proposed are specific for the description of shod motion, and can be used in future research designed at comparing between different footwear.


Journal of Athletic Training | 2008

A Biomechanical Investigation of A Single-Limb Squat: Implications for Lower Extremity Rehabilitation Exercise

Jim Richards; Dominic Thewlis; James Selfe; Andrew Cunningham; Colin Hayes

CONTEXT Single-limb squats on a decline angle have been suggested as a rehabilitative intervention to target the knee extensors. Investigators, however, have presented very little empirical research in which they have documented the biomechanics of these exercises or have determined the optimum angle of decline used. OBJECTIVE To determine the involvement of the gastrocnemius and rectus femoris muscles and the external ankle and knee joint moments at 60 degrees of knee flexion while performing a single-limb squat at different decline angles. DESIGN Participants acted as their own controls in a repeated-measures design. PATIENTS OR OTHER PARTICIPANTS We recruited 10 participants who had no pain, injury, or neurologic disorder. INTERVENTION(S) Participants performed single-limb squats at different decline angles. MAIN OUTCOME MEASURE(S) Angle-specific knee and ankle moments were calculated at 60 degrees of knee flexion. Angle-specific electromyography (EMG) activity was calculated at 60 degrees of knee flexion. Integrated EMG also was calculated to determine the level of muscle activity over the entire squat. RESULTS An increase was seen in the knee moments (P < .05) and integrated EMG in the rectus femoris (P < .001) as the decline angle increased. A decrease was seen in the ankle moments as the decline angle increased (P = .001), but EMG activity in the gastrocnemius increased between 16 degrees and 24 degrees (P = .018). CONCLUSIONS As the decline angle increased, the knee extensor moment and EMG activity increased. As the decline angle increased, the ankle plantar-flexor moments decreased; however, an increase in the EMG activity was seen with the 24 degrees decline angle compared with the 16 degrees decline angle. This indicates that decline squats at an angle greater than 16 degrees may not reduce passive calf tension, as was suggested previously, and may provide no mechanical advantage for the knee.


Arthritis Care and Research | 2016

Lateral Wedge Insoles for Reducing Biomechanical Risk Factors for Medial Knee Osteoarthritis Progression: A Systematic Review and Meta‐Analysis

John B. Arnold; Daniel X. Wong; Richard Jones; Catherine Hill; Dominic Thewlis

Lateral wedge insoles are intended to reduce biomechanical risk factors of medial knee osteoarthritis (OA) progression, such as increased knee joint load; however, there has been no definitive consensus on this topic. The aim of this systematic review and meta‐analysis was to establish the within‐subject effects of lateral wedge insoles on knee joint load in people with medial knee OA during walking.


Journal of Foot and Ankle Research | 2014

Consensus-based recommendations of Australian podiatrists for the prescription of foot orthoses for symptomatic flexible pes planus in adults

Helen A Banwell; Shylie Mackintosh; Dominic Thewlis; Karl B. Landorf

BackgroundFoot orthoses are commonly used for symptomatic flexible pes planus in adults. However, there are no clinical guidelines for the prescription of customised foot orthoses that are specific to this population. The aim of this study was to investigate prescription habits of Australian podiatrists for customised foot orthoses for symptomatic flexible pes planus in adults and to develop consensus-based practice recommendations for the prescription of these foot orthoses.MethodsA four round Delphi survey was undertaken with 24 podiatric experts to establish current use and rationale for individual prescription variables of customised foot orthoses for symptomatic flexible pes planus in adults. Round one determined prescription use (consensus) and rounds two, three and four determined the rationale for use (agreement) of prescription variables across the rearfoot, midfoot, forefoot, as well as accommodation and materials used. For consensus and agreement to be accepted, 70% of the respondents were required to use or agree on the rationale for use of individual prescription variables.ResultsConsensus was reached in round one for two variables, choice of shell material (polyolefin) and when to prescribe a forefoot post balanced to perpendicular. In rounds two, three and four, agreement was reached for 52 statements related to the rationale for use of individual prescription variables, including when to prescribe: an inverted cast pour [heel in an inverted position], an inverted rearfoot post, a medial heel (Kirby) skive, minimal/maximum arch fill, a medial flange, a forefoot post and common orthotic accommodations.ConclusionThis study found consensus or agreement for the use of several prescription variables for customised foot orthoses for symptomatic flexible pes planus in adults. The findings were used to develop the Foot orthosis Prescription Recommendations for symptOmatic flexible Pes planus in adults (FootPROP) proforma, to guide clinicians and researchers in the prescription of customised foot orthoses for this population.


Gait & Posture | 2013

Repeatability of stance phase kinematics from a multi-segment foot model in people aged 50 years and older

John B. Arnold; Shylie Mackintosh; Sara Jones; Dominic Thewlis

Confidence in 3D multi-segment foot models has been limited by a lack of repeatability data, particularly in older populations that may display unique functional foot characteristics. This study aimed to determine the intra and inter-observer repeatability of stance phase kinematic data from a multi-segment foot model described by Leardini et al. [2] in people aged 50 years or older. Twenty healthy adults participated (mean age 65.4 years SD 8.4). A repeated measures study design was used with data collected from four testing sessions on two days from two observers. Intra (within-day and between-day) and inter-observer coefficient of multiple correlations revealed moderate to excellent similarity of stance phase joint range of motion (0.621-0.975). Relative to the joint range of motion (ROM), mean differences (MD) between sessions were highest for the within-day comparison for all planar ROM at the metatarsus-midfoot articulation (sagittal plane ROM 5.2° vs. 3.9°, MD 3.1°; coronal plane ROM 3.9 vs. 3.1°, MD 2.3°; transverse plane ROM 6.8° vs. 5.16°, MD 3.5°). Consequently, data from the metatarsus-midfoot articulation in the Istituto Ortopedico Rizzoli (IOR) foot model in adults aged over 50 years needs to be considered with respect to the findings of this study.

Collaboration


Dive into the Dominic Thewlis's collaboration.

Top Co-Authors

Avatar

Chris Bishop

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Gunther Paul

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

John B. Arnold

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Shylie Mackintosh

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francois Fraysse

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Joel T. Fuller

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Jonathan D. Buckley

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Margarita D. Tsiros

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Jim Richards

University of Central Lancashire

View shared research outputs
Researchain Logo
Decentralizing Knowledge