Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominik K. Biezonski is active.

Publication


Featured researches published by Dominik K. Biezonski.


Molecular Psychiatry | 2015

Evidence against dopamine D1/D2 receptor heteromers

Aliya L. Frederick; Hideaki Yano; Pierre Trifilieff; Harshad D. Vishwasrao; Dominik K. Biezonski; Jozsef Meszaros; Eneko Urizar; D R Sibley; Christoph Kellendonk; Kai C. Sonntag; Devon L. Graham; Roger J. Colbran; Gregg D. Stanwood; Jonathan A. Javitch

Hetero-oligomers of G-protein-coupled receptors have become the subject of intense investigation, because their purported potential to manifest signaling and pharmacological properties that differ from the component receptors makes them highly attractive for the development of more selective pharmacological treatments. In particular, dopamine D1 and D2 receptors have been proposed to form hetero-oligomers that couple to Gαq proteins, and SKF83959 has been proposed to act as a biased agonist that selectively engages these receptor complexes to activate Gαq and thus phospholipase C. D1/D2 heteromers have been proposed as relevant to the pathophysiology and treatment of depression and schizophrenia. We used in vitro bioluminescence resonance energy transfer, ex vivo analyses of receptor localization and proximity in brain slices, and behavioral assays in mice to characterize signaling from these putative dimers/oligomers. We were unable to detect Gαq or Gα11 protein coupling to homomers or heteromers of D1 or D2 receptors using a variety of biosensors. SKF83959-induced locomotor and grooming behaviors were eliminated in D1 receptor knockout (KO) mice, verifying a key role for D1-like receptor activation. In contrast, SKF83959-induced motor responses were intact in D2 receptor and Gαq KO mice, as well as in knock-in mice expressing a mutant Ala286-CaMKIIα that cannot autophosphorylate to become active. Moreover, we found that, in the shell of the nucleus accumbens, even in neurons in which D1 and D2 receptor promoters are both active, the receptor proteins are segregated and do not form complexes. These data are not compatible with SKF83959 signaling through Gαq or through a D1/D2 heteromer and challenge the existence of such a signaling complex in the adult animals that we used for our studies.


Current Neuropharmacology | 2011

The Nature of 3, 4-Methylenedioxymethamphetamine (MDMA)-Induced Serotonergic Dysfunction: Evidence for and Against the Neurodegeneration Hypothesis

Dominik K. Biezonski; Jerrold S. Meyer

High doses of the recreational drug 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) have been well-documented to reduce the expression of serotonergic markers in several forebrain regions of rats and nonhuman primates. Neuroimaging studies further suggest that at least one of these markers, the plasma membrane serotonin transporter (SERT), may also be reduced in heavy Ecstasy users. Such effects, particularly when observed in experimental animal models, have generally been interpreted as reflecting a loss of serotonergic fibers and terminals following MDMA exposure. This view has been challenged, however, based on the finding that MDMA usually does not elicit glial cell reactions known to occur in response to central nervous system (CNS) damage. The aim of this review is to address both sides of the MDMA-neurotoxicity controversy, including recent findings from our laboratory regarding the potential of MDMA to induce serotonergic damage in a rat binge model. Our data add to the growing literature implicating neuroregulatory mechanisms underlying MDMA-induced serotonergic dysfunction and questioning the need to invoke a degenerative response to explain such dysfunction.


Journal of Neurochemistry | 2010

Effects of 3,4‐methylenedioxymethamphetamine (MDMA) on serotonin transporter and vesicular monoamine transporter 2 protein and gene expression in rats: implications for MDMA neurotoxicity

Dominik K. Biezonski; Jerrold S. Meyer

J. Neurochem. (2009) 112, 951–962.


Neuropsychopharmacology | 2015

Neural Correlates of Aggression in Medication-Naive Children with ADHD: Multivariate Analysis of Morphometry and Tractography.

Jiook Cha; Tomer Fekete; Francesco Siciliano; Dominik K. Biezonski; Laurence L. Greenhill; Steven R. Pliszka; Joseph C. Blader; Amy Krain Roy; Ellen Leibenluft; Jonathan Posner

Aggression is widely observed in children with attention deficit/hyperactivity disorder (ADHD) and has been frequently linked to frustration or the unsatisfied anticipation of reward. Although animal studies and human functional neuroimaging implicate altered reward processing in aggressive behaviors, no previous studies have documented the relationship between fronto-accumbal circuitry—a critical cortical pathway to subcortical limbic regions—and aggression in medication-naive children with ADHD. To address this, we collected behavioral measures and parental reports of aggression and impulsivity, as well as structural and diffusion MRI, from 30 children with ADHD and 31 healthy controls (HC) (mean age, 10±2.1 SD). Using grey matter morphometry and probabilistic tractography combined with multivariate statistical modeling (partial least squares regression and support vector regression), we identified anomalies within the fronto-accumbal circuit in childhood ADHD, which were associated with increased aggression. More specifically, children with ADHD showed reduced right accumbal volumes and frontal-accumbal white matter connectivity compared with HC. The magnitude of the accumbal volume reductions within the ADHD group was significantly correlated with increased aggression, an effect mediated by the relationship between the accumbal volume and impulsivity. Furthermore, aggression, but not impulsivity, was significantly explained by multivariate measures of fronto-accumbal white matter connectivity and cortical thickness within the orbitofrontal cortex. Our multi-modal imaging, combined with multivariate statistical modeling, indicates that the fronto-accumbal circuit is an important substrate of aggression in children with ADHD. These findings suggest that strategies aimed at probing the fronto-accumbal circuit may be beneficial for the treatment of aggressive behaviors in childhood ADHD.


Biological Psychiatry | 2014

Selective Overexpression of Dopamine D3 Receptors in the Striatum Disrupts Motivation but not Cognition

Eleanor H. Simpson; Vanessa Winiger; Dominik K. Biezonski; Iram Haq; Eric R. Kandel; Christoph Kellendonk

BACKGROUND Evidence indicating an increase in dopamine D2 receptor (D2R) density and occupancy in patients with schizophrenia comes from positron emission tomography studies using ligands that bind both D2Rs and dopamine D3 receptors (D3Rs), questioning the role of D3Rs in the pathophysiology of the disease. Dopamine D3 receptor positron emission tomography ligands have recently been developed and antagonists with preferential affinity for D3R versus D2R are undergoing clinical evaluation. To determine if an increase in D3Rs in the striatum could produce phenotypes relevant to schizophrenia, we generated a transgenic model of striatal D3R overexpression. METHODS A bi-transgenic system was used to generate mice with increased D3Rs selectively in the striatum. Mice with overexpression of D3R were subjected to an extensive battery of behavioral tests, including several relevant to schizophrenia. Ligand binding and quantitative reverse transcription polymerase chain reaction methods were used to quantify the effect of D3R overexpression on dopamine D1 receptors (D1Rs) in the striatum. RESULTS Mice with overexpression of D3R show no abnormalities in basic behavioral functions or cognitive tests but do display a deficit in incentive motivation. This was associated with a reduction in striatal D1R ligand binding, driven by a downregulation at the level of transcription. Both motivation and D1R expression were rescued by switching off the transgene in adulthood. CONCLUSIONS Overexpression of D3Rs in the striatum of mice does not elicit cognitive deficits but disrupts motivation, suggesting that changes in D3Rs may be involved in the negative symptoms of schizophrenia. These data imply that it will be important to evaluate the effects of D3R antagonists on motivational symptoms, which are not improved by currently available antipsychotic medications.


Learning & Memory | 2014

Genetic Variation in COMT Activity Impacts Learning and Dopamine Release Capacity in the Striatum.

Eleanor H. Simpson; Julia Morud; Vanessa Winiger; Dominik K. Biezonski; Judy Zhu; Mary Elizabeth Bach; Gaël Malleret; H. Jonathan Polan; Scott Ng-Evans; Paul E. M. Phillips; Christoph Kellendonk; Eric R. Kandel

A common genetic polymorphism that results in increased activity of the dopamine regulating enzyme COMT (the COMT Val(158) allele) has been found to associate with poorer cognitive performance and increased susceptibility to develop psychiatric disorders. It is generally assumed that this increase in COMT activity influences cognitive function and psychiatric disease risk by increasing dopamine turnover in cortical synapses, though this cannot be directly measured in humans. Here we explore a novel transgenic mouse model of increased COMT activity, equivalent to the relative increase in activity observed with the human COMT Val(158) allele. By performing an extensive battery of behavioral tests, we found that COMT overexpressing mice (COMT-OE mice) exhibit cognitive deficits selectively in the domains that are affected by the COMT Val(158) allele, stimulus-response learning and working memory, functionally validating our model of increased COMT activity. Although we detected no changes in the level of markers for dopamine synthesis and dopamine transport, we found that COMT-OE mice display an increase in dopamine release capacity in the striatum. This result suggests that increased COMT activity may not only affect dopamine signaling by enhancing synaptic clearance in the cortex, but may also cause changes in presynaptic dopamine function in the striatum. These changes may underlie the behavioral deficits observed in the mice and might also play a role in the cognitive deficits and increased psychiatric disease risk associated with genetic variation in COMT activity in humans.


Brain Research | 2009

Repeated adolescent MDMA (“Ecstasy”) exposure in rats increases behavioral and neuroendocrine responses to a 5-HT2A/2C agonist

Dominik K. Biezonski; Andrea B. Courtemanche; Sang B. Hong; Brian J. Piper; Jerrold S. Meyer

MDMA (3,4-methylenedioxymethamphetamine) is a popular recreational drug among adolescents. The present study aimed to determine the effects of repeated intermittent administration of 10 mg/kg MDMA during adolescence on behavioral (Experiment 1) and neuroendocrine (Experiment 2) responses of rats to the 5-HT(2A/2C) agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and on [(3)H]ketanserin binding to 5-HT(2A) receptors. In the first experiment, MDMA pretreatment increased the frequency of head twitches and back muscle contractions, but not wet-dog shakes, to a high-dose DOI challenge. In the second experiment, both the prolactin and corticosterone responses to DOI were potentiated in MDMA-pretreated animals. No changes were found in 5-HT(2A) receptor binding in the hypothalamus or other forebrain areas that were examined. These results indicate that intermittent adolescent MDMA exposure enhances sensitivity of 5-HT(2A/2C) receptors in the CNS, possibly through changes in downstream signaling mechanisms.


Neuropsychopharmacology | 2016

Evidence for Thalamocortical Circuit Abnormalities and Associated Cognitive Dysfunctions in Underweight Individuals with Anorexia Nervosa.

Dominik K. Biezonski; Jiook Cha; Joanna E. Steinglass; Jonathan Posner

Anorexia nervosa (AN) is characterized by extremely low body weight resulting from pathological food restriction, and carries a mortality rate among the highest of any psychiatric illness. AN, particularly during the acute, underweight state of the illness, has been associated with abnormalities across a range of brain regions, including the frontal cortex and basal ganglia. Few studies of AN have investigated the thalamus, a key mediator of information flow through frontal-basal ganglia circuit loops. We examined both thalamic surface morphology using anatomical MRI and thalamo-frontal functional connectivity using resting-state functional MRI. Individuals with AN (n=28) showed localized inward deformations of the thalamus relative to healthy controls (HC, n=22), and abnormal functional connectivity between the thalamus and the dorsolateral and anterior prefrontal cortices. Alterations in thalamo-frontal connectivity were associated with deficits in performance on tasks probing cognitive control (Stroop task) and working memory (Letter-Number Sequencing (LNS) task). Our findings suggest that abnormalities in thalamo-frontal circuits may have a role in mediating aspects of cognitive dysfunction in underweight individuals with AN.


European Journal of Pharmacology | 2013

Effects of a short-course MDMA binge on dopamine transporter binding and on levels of dopamine and its metabolites in adult male rats.

Dominik K. Biezonski; Brian J. Piper; Nina M. Shinday; Peter Kim; Syed F. Ali; Jerrold S. Meyer

Although the recreational drug 3,4-methylenedioxymethamphetamine (MDMA) is often described as a selective serotonergic neurotoxin, some research has challenged this view. The objective of this study was to determine the influence of MDMA on subsequent levels of two different markers of dopaminergic function, the dopamine transporter (DAT) as well as dopamine and its major metabolites. In experiment I, adult male Sprague-Dawley rats were administered either a low or moderate dose MDMA binge (2.5 or 5.0mg/kg×4 with an inter-dose interval of 1h) or saline, and were killed 1 week later. The moderate dose dramatically reduced [(3)H]WIN 35,428 binding to striatal DAT by 73.7% (P≤0.001). In experiment II, animals were binged with a higher dose of MDMA (10mg/kg×4) to determine the drugs effects on concentrations of serotonin (5-HT), dopamine, and their respective major metabolites 5-hydroxyindoleacetic acid (5-HIAA), dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in the striatum and frontal cortex 1 week later. As expected, MDMA significantly reduced 5-HT and 5-HIAA (≥50%) in these structures, while only a marginal decrease in dopamine was noted in the striatum. In contrast, levels of DOPAC (34.3%, P<0.01) and HVA (33.5%, P<0.001) were reduced by MDMA treatment, suggesting a decrease in dopamine turnover. Overall, these findings indicate that while serotonergic markers are particularly vulnerable to MDMA-induced depletion, significant dopaminergic deficits may also occur under some conditions. Importantly, DAT expression may be more vulnerable to perturbation by MDMA than dopamine itself.


The Journal of Comparative Neurology | 2015

Evidence for limited D1 and D2 receptor coexpression and colocalization within the dorsal striatum of the neonatal mouse.

Dominik K. Biezonski; Pierre Trifilieff; Jozsef Meszaros; Jonathan A. Javitch; Christoph Kellendonk

Collaboration


Dive into the Dominik K. Biezonski's collaboration.

Top Co-Authors

Avatar

Jerrold S. Meyer

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiook Cha

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanna E. Steinglass

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge