Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominik Kriegner is active.

Publication


Featured researches published by Dominik Kriegner.


Nature Photonics | 2015

Detection of X-ray photons by solution-processed lead halide perovskites

Sergii Yakunin; Mykhailo Sytnyk; Dominik Kriegner; Shreetu Shrestha; Moses Richter; Gebhard J. Matt; Hamed Azimi; Christoph J. Brabec; J. Stangl; Maksym V. Kovalenko; W. Heiss

The evolution of real-time medical diagnostic tools such as angiography and computer tomography from radiography based on photographic plates was enabled by the development of integrated solid-state X-ray photon detectors, based on conventional solid-state semiconductors. Recently, for optoelectronic devices operating in the visible and near infrared spectral regions, solution-processed organic and inorganic semiconductors have also attracted immense attention. Here we demonstrate a possibility to use such inexpensive semiconductors for sensitive detection of X-ray photons by direct photon-to-current conversion. In particular, methylammonium lead iodide perovskite (CH3NH3PbI3) offers a compelling combination of fast photoresponse and a high absorption cross-section for X-rays, owing to the heavy Pb and I atoms. Solution processed photodiodes as well as photoconductors are presented, exhibiting high values of X-ray sensitivity (up to 25 µC mGyair-1 cm-3) and responsivity (1.9×104 carriers/photon), which are commensurate with those obtained by the current solid-state technology.


Nano Letters | 2013

Direct Band Gap Wurtzite Gallium Phosphide Nanowires

S Simone Assali; Ilaria Zardo; Sr Sebastien Plissard; Dominik Kriegner; Marcel A. Verheijen; G. Bauer; Andries Meijerink; A Belabbes; F. Bechstedt; Jem Jos Haverkort; Epam Erik Bakkers

The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality.


Nano Letters | 2011

Unit Cell Structure of Crystal Polytypes in InAs and InSb Nanowires

Dominik Kriegner; Christian Panse; Bernhard Mandl; Kimberly A. Dick; Mario Keplinger; Johan Mikael Persson; Philippe Caroff; D. Ercolani; Lucia Sorba; F. Bechstedt; J. Stangl; G. Bauer

The atomic distances in hexagonal polytypes of III-V compound semiconductors differ from the values expected from simply a change of the stacking sequence of (111) lattice planes. While these changes were difficult to quantify so far, we accurately determine the lattice parameters of zinc blende, wurtzite, and 4H polytypes for InAs and InSb nanowires, using X-ray diffraction and transmission electron microscopy. The results are compared to density functional theory calculations. Experiment and theory show that the occurrence of hexagonal bilayers tends to stretch the distances of atomic layers parallel to the c axis and to reduce the in-plane distances compared to those in zinc blende. The change of the lattice parameters scales linearly with the hexagonality of the polytype, defined as the fraction of bilayers with hexagonal character within one unit cell.


ACS Nano | 2014

Unraveling the Core–Shell Structure of Ligand-Capped Sn/SnOx Nanoparticles by Surface-Enhanced Nuclear Magnetic Resonance, Mössbauer, and X-ray Absorption Spectroscopies

Loredana Protesescu; Aaron J. Rossini; Dominik Kriegner; Maxence Valla; Antoine de Kergommeaux; Marc D. Walter; Kostiantyn V. Kravchyk; Maarten Nachtegaal; J. Stangl; Bernard Malaman; Peter Reiss; Anne Lesage; Lyndon Emsley; Christophe Copéret; Maksym V. Kovalenko

A particularly difficult challenge in the chemistry of nanomaterials is the detailed structural and chemical analysis of multicomponent nano-objects. This is especially true for the determination of spatially resolved information. In this study, we demonstrate that dynamic nuclear polarization surface-enhanced solid-state NMR spectroscopy (DNP-SENS), which provides selective and enhanced NMR signal collection from the (near) surface regions of a sample, can be used to resolve the core-shell structure of a nanoparticle. Li-ion anode materials, monodisperse 10-20 nm large tin nanoparticles covered with a ∼3 nm thick layer of native oxides, were used in this case study. DNP-SENS selectively enhanced the weak 119Sn NMR signal of the amorphous surface SnO2 layer. Mössbauer and X-ray absorption spectroscopies identified a subsurface SnO phase and quantified the atomic fractions of both oxides. Finally, temperature-dependent X-ray diffraction measurements were used to probe the metallic β-Sn core and indicated that even after 8 months of storage at 255 K there are no signs of conversion of the metallic β-Sn core into a brittle semiconducting α-phase, a phase transition which normally occurs in bulk tin at 286 K (13 °C). Taken together, these results indicate that Sn/SnOx nanoparticles have core/shell1/shell2 structure of Sn/SnO/SnO2 phases. The study suggests that DNP-SENS experiments can be carried on many types of uniform colloidal nanomaterials containing NMR-active nuclei, in the presence of either hydrophilic (ion-capped surfaces) or hydrophobic (capping ligands with long hydrocarbon chains) surface functionalities.


Nano Letters | 2013

Tuning the Magnetic Properties of Metal Oxide Nanocrystal Heterostructures by Cation Exchange

Mykhailo Sytnyk; Raimund Kirchschlager; Maryna I. Bodnarchuk; Daniel Primetzhofer; Dominik Kriegner; Herbert Enser; J. Stangl; P. Bauer; Michael Voith; Achim Walter Hassel; Frank Krumeich; Arno Meingast; Gerald Kothleitner; Maksym V. Kovalenko; W. Heiss

For three types of colloidal magnetic nanocrystals, we demonstrate that postsynthetic cation exchange enables tuning of the nanocrystal’s magnetic properties and achieving characteristics not obtainable by conventional synthetic routes. While the cation exchange procedure, performed in solution phase approach, was restricted so far to chalcogenide based semiconductor nanocrystals, here ferrite-based nanocrystals were subjected to a Fe2+ to Co2+ cation exchange procedure. This allows tracing of the compositional modifications by systematic and detailed magnetic characterization. In homogeneous magnetite nanocrystals and in gold/magnetite core shell nanocrystals the cation exchange increases the coercivity field, the remanence magnetization, as well as the superparamagnetic blocking temperature. For core/shell nanoheterostructures a selective doping of either the shell or predominantly of the core with Co2+ is demonstrated. By applying the cation exchange to FeO/CoFe2O4 core/shell nanocrystals the Neél temperature of the core material is increased and exchange-bias effects are enhanced so that vertical shifts of the hysteresis loops are obtained which are superior to those in any other system.


Nature Communications | 2013

Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs

P. Wadley; V. Novák; R. P. Campion; Christian Rinaldi; X. Marti; H. Reichlová; J. Železný; Jaume Gazquez; M.A. Roldan; M. Varela; D. Khalyavin; S. Langridge; Dominik Kriegner; F. Máca; J. Mašek; Riccardo Bertacco; Václav Holý; A. W. Rushforth; K. W. Edmonds; B. L. Gallagher; C. T. Foxon; J. Wunderlich; T. Jungwirth

Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the epitaxial growth of a new high-temperature antiferromagnetic material, tetragonal CuMnAs, which exhibits excellent crystal quality, chemical order and compatibility with existing semiconductor technologies. We demonstrate its growth on the III-V semiconductors GaAs and GaP, and show that the structure is also lattice matched to Si. Neutron diffraction shows collinear antiferromagnetic order with a high Néel temperature. Combined with our demonstration of room-temperature-exchange coupling in a CuMnAs/Fe bilayer, we conclude that tetragonal CuMnAs films are suitable candidate materials for antiferromagnetic spintronics.


Nano Letters | 2015

Hexagonal silicon realized

Håkon Ikaros T. Hauge; Marcel A. Verheijen; Sonia Conesa-Boj; Tanja Etzelstorfer; Marc Watzinger; Dominik Kriegner; Ilaria Zardo; Claudia Fasolato; F. Capitani; P. Postorino; Sebastian Kölling; Ang Li; S Simone Assali; J. Stangl; Erik P. A. M. Bakkers

Silicon, arguably the most important technological semiconductor, is predicted to exhibit a range of new and interesting properties when grown in the hexagonal crystal structure. To obtain pure hexagonal silicon is a great challenge because it naturally crystallizes in the cubic structure. Here, we demonstrate the fabrication of pure and stable hexagonal silicon evidenced by structural characterization. In our approach, we transfer the hexagonal crystal structure from a template hexagonal gallium phosphide nanowire to an epitaxially grown silicon shell, such that hexagonal silicon is formed. The typical ABABAB... stacking of the hexagonal structure is shown by aberration-corrected imaging in transmission electron microscopy. In addition, X-ray diffraction measurements show the high crystalline purity of the material. We show that this material is stable up to 9 GPa pressure. With this development, we open the way for exploring its optical, electrical, superconducting, and mechanical properties.


Nano Letters | 2014

Gold-Free Ternary III-V Antimonide Nanowire Arrays on Silicon: Twin-Free down to the First Bilayer

Sonia Conesa-Boj; Dominik Kriegner; Xiang-Lei Han; Sr Sebastien Plissard; X. Wallart; J. Stangl; Anna Fontcuberta i Morral; Philippe Caroff

With the continued maturation of III–V nanowire research, expectations of material quality should be concomitantly raised. Ideally, III–V nanowires integrated on silicon should be entirely free of extended planar defects such as twins, stacking faults, or polytypism, position-controlled for convenient device processing, and gold-free for compatibility with standard complementary metal–oxide–semiconductor (CMOS) processing tools. Here we demonstrate large area vertical GaAsxSb1–x nanowire arrays grown on silicon (111) by molecular beam epitaxy. The nanowires’ complex faceting, pure zinc blende crystal structure, and composition are mapped using characterization techniques both at the nanoscale and in large-area ensembles. We prove unambiguously that these gold-free nanowires are entirely twin-free down to the first bilayer and reveal their three-dimensional composition evolution, paving the way for novel infrared devices integrated directly on the cost-effective Si platform.


ACS Nano | 2012

From Highly Monodisperse Indium and Indium Tin Colloidal Nanocrystals to Self-Assembled Indium Tin Oxide Nanoelectrodes

Maksym Yarema; Stefan Pichler; Dominik Kriegner; J. Stangl; Olesya Yarema; Raimund Kirchschlager; Sajjad Tollabimazraehno; Markus Humer; Daniel Häringer; Manfred Kohl; Gang Chen; W. Heiss

Indium tin oxide (ITO) nanopatterned electrodes are prepared from colloidal solutions as a material saving alternative to the industrial vapor phase deposition and top down processing. For that purpose highly monodisperse In(1-x)Sn(x) (x < 0.1) colloidal nanocrystals (NCs) are synthesized with accurate size and composition control. The outstanding monodispersity of the NCs is evidenced by their self-assembly properties into highly ordered superlattices. Deposition on structured substrates and subsequent treatment in oxygen plasma converts the NC assemblies into transparent electrode patterns with feature sizes down to the diameter of single NCs. The conductivity in these ITO electrodes competes with the best values reported for electrodes from ITO nanoparticle inks.


Journal of the American Chemical Society | 2014

Hydrogen-Bonded Organic Semiconductor Micro- And Nanocrystals: From Colloidal Syntheses to (Opto-)Electronic Devices

Mykhailo Sytnyk; Eric Daniel Głowacki; Sergii Yakunin; Gundula Voss; Wolfgang Schöfberger; Dominik Kriegner; J. Stangl; Rinaldo Trotta; Claudia Gollner; Sajjad Tollabimazraehno; Giuseppe Romanazzi; Zeynep Bozkurt; Marek Havlicek; Niyazi Serdar Sariciftci; W. Heiss

Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The synthesis is based on the transformation of the pigments into soluble dyes by introducing transient protecting groups on the secondary amine moieties, followed by controlled deprotection in solution. Three deprotection methods are demonstrated: thermal cleavage, acid-catalyzed deprotection, and amine-induced deprotection. During these processes, ligands are introduced to afford colloidal stability and to provide dedicated surface functionality and for size and shape control. The resulting micro- and nanocrystals exhibit a wide range of optical absorption and photoluminescence over spectral regions from the visible to the near-infrared. Due to excellent colloidal solubility offered by the ligands, the achieved organic nanocrystals are suitable for solution processing of (opto)electronic devices. As examples, phthalocyanine nanowire transistors as well as quinacridone nanocrystal photodetectors, with photoresponsivity values by far outperforming those of vacuum deposited reference samples, are demonstrated. The high responsivity is enabled by photoinduced charge transfer between the nanocrystals and the directly attached electron-accepting vitamin B2 ligands. The semiconducting nanocrystals described here offer a cheap, nontoxic, and environmentally friendly alternative to inorganic nanocrystals as well as a new paradigm for obtaining organic semiconductor materials from commercial colorants.

Collaboration


Dive into the Dominik Kriegner's collaboration.

Top Co-Authors

Avatar

J. Stangl

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar

Václav Holý

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar

G. Bauer

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar

Mario Keplinger

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar

Václav Holý

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar

X. Marti

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

W. Heiss

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Bernhard Mandl

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar

G. Springholz

Johannes Kepler University of Linz

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge