Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominik Linz is active.

Publication


Featured researches published by Dominik Linz.


Hypertension | 2012

Renal Hemodynamics and Renal Function After Catheter-Based Renal Sympathetic Denervation in Patients With Resistant Hypertension

Felix Mahfoud; Bodo Cremers; Julia Janker; Britta Link; Oliver Vonend; Christian Ukena; Dominik Linz; Roland E. Schmieder; Lars Christian Rump; Ingrid Kindermann; Paul A. Sobotka; Henry Krum; Bruno Scheller; Markus P. Schlaich; Ulrich Laufs; Michael Böhm

Increased renal resistive index and urinary albumin excretion are markers of hypertensive end-organ damage and renal vasoconstriction involving increased sympathetic activity. Catheter-based sympathetic renal denervation (RD) offers a new approach to reduce renal sympathetic activity and blood pressure in resistant hypertension. The influence of RD on renal hemodynamics, renal function, and urinary albumin excretion has not been studied. One hundred consecutive patients with resistant hypertension were included in the study; 88 underwent interventional RD and 12 served as controls. Systolic, diastolic, and pulse pressure, as well renal resistive index in interlobar arteries, renal function, and urinary albumin excretion, were measured before and at 3 and 6 months of follow-up. RD reduced systolic, diastolic, and pulse pressure at 3 and 6 months by 22.7/26.6 mm Hg, 7.7/9.7 mm Hg, and 15.1/17.5 mm Hg (P for all <0.001), respectively, without significant changes in the control group. SBP reduction after 6 months correlated with SBP baseline values (r=−0.46; P<0.001). There were no renal artery stenoses, dissections, or aneurysms during 6 months of follow-up. Renal resistive index decreased from 0.691±0.01 at baseline to 0.674±0.01 and 0.670±0.01 (P=0.037/0.017) at 3- and 6-month follow-up. Mean cystatin C glomerular filtration rate and urinary albumin excretion remained unchanged after RD; however, the number of patients with microalbuminuria or macroalbuminuria decreased. RD reduced blood pressure, renal resistive index, and incidence of albuminuria without adversely affecting glomerular filtration rate or renal artery structure within 6 months and appears to be a safe and effective therapeutic approach to lower blood pressure in patients with resistant hypertension.


Hypertension | 2012

Renal Sympathetic Denervation Suppresses Postapneic Blood Pressure Rises and Atrial Fibrillation in a Model for Sleep Apnea

Dominik Linz; Felix Mahfoud; Ulrich Schotten; Christian Ukena; Hans-Ruprecht Neuberger; Klaus Wirth; Michael Böhm

The aim of this study was to identify the relative impact of adrenergic and cholinergic activity on atrial fibrillation (AF) inducibility and blood pressure (BP) in a model for obstructive sleep apnea. Obstructive sleep apnea is associated with sympathovagal disbalance, AF, and postapneic BP rises. Renal denervation (RDN) reduces renal efferent and possibly also afferent sympathetic activity and BP in resistant hypertension. The effects of RDN compared with &bgr;-blockade by atenolol on atrial electrophysiological changes, AF inducibility, and BP during obstructive events and on shortening of atrial effective refractory period (AERP) induced by high-frequency stimulation of ganglionated plexi were investigated in 20 anesthetized pigs. Tracheal occlusion with applied negative tracheal pressure (NTP; at −80 mbar) induced pronounced AERP shortening and increased AF inducibility in all of the pigs. RDN but not atenolol reduced NTP-induced AF-inducibility (20% versus 100% at baseline; P=0.0001) and attenuated NTP-induced AERP shortening more than atenolol (27±5 versus 43±3 ms after atenolol; P=0.0272). Administration of atropine after RDN or atenolol completely inhibited NTP-induced AERP shortening. AERP shortening induced by high-frequency stimulation of ganglionated plexi was not influenced by RDN, suggesting that changes in sensitivity of ganglionated plexi do not play a role in the antiarrhythmic effect of RDN. Postapneic BP rise was inhibited by RDN and not modified by atenolol. We showed that vagally mediated NTP-induced AERP shortening is modulated by RDN or atenolol, which emphasizes the importance of autonomic disbalance in obstructive sleep apnea-associated AF. Renal denervation displays antiarrhythmic effects by reducing NTP-induced AERP shortening and inhibits postapneic BP rises associated with obstructive events.


Heart Rhythm | 2013

Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs

Dominik Linz; Klaus Wirth; Christian Ukena; Felix Mahfoud; Janine Pöss; Benedikt Linz; Michael Böhm; Hans-Ruprecht Neuberger

BACKGROUND Increased sympathetic activation during acute ventricular ischemia is involved in the occurrence of life-threatening arrhythmias. OBJECTIVE To test the effect of sympathetic inhibition by renal denervation (RDN) on ventricular ischemia/reperfusion arrhythmias. METHODS Anesthetized pigs, randomized to RDN or SHAM treatment, were subjected to 20 minutes of left anterior descending coronary artery (LAD) occlusion followed by reperfusion. Infarct size, hemodynamics, premature ventricular contractions, and spontaneous ventricular tachyarrhythmias were analyzed. Monophasic action potentials were recorded with an epicardial probe at the ischemic area. RESULTS Ventricular ischemia resulted in an acute reduction of blood pressure (-29%) and peak left ventricular pressure rise (-40%), which were not significantly affected by RDN. However, elevation of left ventricular end-diastolic pressure (LVEDP) during LAD ligation was attenuated by RDN (ΔLVEDP: +1.8 ± 0.6 mm Hg vs +9.7 ± 1 mm Hg in the SHAM group; P = .046). Infarct size was not affected by RDN compared to SHAM. RDN significantly reduced spontaneous ventricular extrabeats (160 ± 15/10 min in the RDN group vs 422 ± 36/10 min in the SHAM group; P = .021) without affecting coupling intervals. In 5 of 6 SHAM-treated animals, ventricular fibrillation (VF) occurred during LAD occlusion. By contrast, only 1 of 7 RDN-treated animals experienced VF (P = .029). Beta-receptor blockade by atenolol showed comparable effects. Neither VF nor transient shortening of monophasic action potential duration during reperfusion was inhibited by RDN. CONCLUSIONS RDN reduced the occurrence of ventricular arrhythmias/fibrillation and attenuated the rise in LVEDP during left ventricular ischemia without affecting infarct size, changes in ventricular contractility, blood pressure, and reperfusion arrhythmias. Therefore, RDN may protect from ventricular arrhythmias during ischemic events.


Heart Rhythm | 2011

Negative tracheal pressure during obstructive respiratory events promotes atrial fibrillation by vagal activation

Dominik Linz; Ulrich Schotten; Hans-Ruprecht Neuberger; Michael Böhm; Klaus Wirth

BACKGROUND Obstructive sleep apnea (OSA) causes negative tracheal pressure (NTP) and is associated with atrial fibrillation (AF). OBJECTIVE This study aimed to determine the mechanism of atrial electrophysiological changes during tracheal occlusion with or without applied NTP and to evaluate the role of vagal activation, Na(+)/H(+)exchanger (NHE), and ATP-dependent potassium channels (K(ATP)). METHODS Seventeen closed-chest pigs were anesthetized with urethane, and an endotracheal tube was placed to apply NTP (up to -100 mbar), comparable to clinically observed OSA in patients by a negative pressure device for a time period of 2 minutes. Right atrial refractory periods (AERP) and AF inducibility were measured transvenously by a monophasic action potential recording and stimulation catheter. RESULTS All tracheal occlusions with and without applied NTP resulted in comparable increases in blood pressure and hypoxemia. NTP shortened AERP (157.0 ± 2.8 to 102.1 ± 6.2 ms; P <.0001) and enhanced AF inducibility during AERP measurements from 0% at baseline to 90% (P <.00001) during NTP. Release of NTP resulted in a prompt restoration of sinus rhythm, and AERP returned to normal. NTP-induced AERP shortening and AF inducibility were prevented by atropine or vagotomy. Neither the NHE blocker cariporide nor the K(ATP) channel blocker glibenclamide abolished NTP-induced AERP shortening. By contrast, tracheal occlusion without applied NTP caused comparable changes in blood gases but did not induce AERP shortening or AF inducibility. CONCLUSION NTP during obstructive events is a strong trigger for AF compared with changes in blood gases alone. NTP caused AERP shortening and increased susceptibility to AF mainly by enhanced vagal activation. AERP shortening was not prevented by K(ATP) channel blockade or NHE blockade.


International Journal of Cardiology | 2013

Effects of renal sympathetic denervation on heart rate and atrioventricular conduction in patients with resistant hypertension.

Christian Ukena; Felix Mahfoud; Aline Spies; Ingrid Kindermann; Dominik Linz; Bodo Cremers; Ulrich Laufs; Hans-Ruprecht Neuberger; Michael Böhm

BACKGROUND Renal sympathetic denervation (RDN) reduces sympathetic activity and blood pressure (BP) in patients with resistant hypertension. The present study aimed to investigate the effects of RDN on HR and other electrocardiographic parameters. METHODS 136 patients aged 62.2 ± 0.8 years (58% male, BP 177 ± 2/93 ± 1 mmHg) with resistant hypertension underwent RDN. BP and a 12-lead electrocardiogram (ECG) were recorded before, 3 months (n=127), and 6 months (n=88) after RDN. RESULTS After 3 months (3M) and 6 months (6M), systolic BP was reduced by 25.5 ± 2.4 mmHg (p<0.0001) and 28.1 ± 3 mmHg (p<0.0001). HR at baseline was 66.1 ± 1 beats per minute (bpm) and was reduced by 2.6 ± 0.8 bpm after 3 months (p=0.001) and 2.1 ± 1.1 bpm after 6 months (p=0.046). Patients with HR at baseline between 60-71 bpm and ≥ 71 bpm had a reduction of 2.9 ± 7.6 bpm (p=0.008) and 9.0 ± 8.6 bpm (p<0.0001), respectively, whereas in patients with baseline HR<60 bpm HR slightly increased after 3 months (2.7 ± 8.4 bpm; p=0.035). Neither baseline HR nor change of HR correlated with the reduction of systolic BP. The PR interval was prolonged by 11.3 ± 2.5 ms (p<0.0001) and 10.3 ± 2.5 ms (p<0.0001) at 3 and 6 months after RDN, respectively. CONCLUSIONS Renal sympathetic denervation reduced heart rate and the PR interval as indicators of cardiac autonomic activity.


Cardiovascular Research | 2011

Time course and mechanisms of endo-epicardial electrical dissociation during atrial fibrillation in the goat

Jens Eckstein; Bart Maesen; Dominik Linz; Stef Zeemering; Arne van Hunnik; Sander Verheule; Maurits A. Allessie; Ulrich Schotten

AIMS This study aims to determine the degree and mechanisms of endo-epicardial dissociation of electrical activity during atrial fibrillation (AF) and endo-epicardial differences in atrial electrophysiology at different stages of atrial remodelling. METHODS AND RESULTS Simultaneous high-density endo-epicardial mapping of AF was performed on left atrial free walls of goats with acute AF, after 3 weeks, and after 6 months of AF (all n = 7). Endo-epicardial activation time differences and differences in the direction of conduction vectors were calculated, endocardial and epicardial effective refractory periods (ERP) were determined, and fractionation of electrograms was quantified. Histograms of endo-epicardial activation time differences and differences in the direction of conduction vectors revealed two distinct populations, i.e. dissociated and non-dissociated activity. Dyssynchronous activity (dissociated in time) increased from 17 ± 7% during acute AF to 39 ± 17% after 3 weeks, and 68 ± 13% after 6 months of AF. Dissociation was more pronounced in thicker parts of the atrial wall (thick: 49.3 ± 21.4%, thin: 42.2 ± 19.0%, P < 0.05). At baseline, endocardial ERPs were longer when compared with epicardial ERPs (ΔERP, 21.8 ± 18 ms; P < 0.001). This difference was absent after 6 months of AF. The percentage of fractionated electrograms during rapid pacing increased from 9.4 ± 1.9% (baseline) to 18.6 ± 0.6% (6 months). CONCLUSION During AF, pronounced dissociation of electrical activity occurs between the epicardial layer and the endocardial bundle network. The increase in dissociation is due to owing to progressive uncoupling between the epicardial layer and the endocardial bundles and correlates with increasing stability and complexity of the AF substrate.


Hypertension | 2013

Renal Sympathetic Denervation Provides Ventricular Rate Control But Does Not Prevent Atrial Electrical Remodeling During Atrial Fibrillation

Dominik Linz; Felix Mahfoud; Ulrich Schotten; Christian Ukena; Mathias Hohl; Hans-Ruprecht Neuberger; Klaus Wirth; Michael Böhm

Renal denervation (RDN) reduces renal efferent and afferent sympathetic activity thereby lowering blood pressure in resistant hypertension. The effect of modulation of the autonomic nervous system by RDN on atrial electrophysiology and ventricular rate control during atrial fibrillation (AF) is unknown. Here we report a reduction of ventricular heart rate in a patient with permanent AF undergoing RDN. Subsequently, we investigated the effect of RDN on AF-induced shortening of atrial effective refractory period, AF inducibility, and ventricular rate control during AF maintained by rapid atrial pacing in 12 pigs undergoing RDN (n=7) or sham procedure (n=5). During sinus rhythm, RDN reduced heart rate (RR-interval, 708±12 versus 577±19 ms; P=0.0021) and increased atrioventricular node conduction time (PQ-interval, 112±12 versus 88±9 ms; P=0.0001). Atrial tachypacing for 30 minutes increased AF inducibility and decreased AF cycle length. This was not influenced by RDN. RDN reduced ventricular rate during AF episodes by ≈24% (119±9 versus 158±19 bpm; P=0.0001). AF episodes were shorter after RDN compared with sham (12±3 versus 34±4 s; P=0.0091), but atrial effective refractory period was not modified by RDN. RDN reduced heart rate and reduced atrioventricular node conduction time during sinus rhythm and provided rate control during AF. AF-induced atrial electrical remodeling, AF inducibility, and AF cycle length were not modified, but duration of AF episodes was shorter after RDN. Modulation of the autonomic nervous system by RDN might provide rate control and reduce susceptibility to AF. Whether RDN may provide rate control in a larger number of patients with AF deserves further clinical studies.


European Heart Journal | 2014

Effect of renal denervation on left ventricular mass and function in patients with resistant hypertension: data from a multi-centre cardiovascular magnetic resonance imaging trial

Felix Mahfoud; Daniel J. Urban; D. Teller; Dominik Linz; Philipp Stawowy; Jh Hassel; Peter Fries; S. Dreysse; E Wellnhofer; G Schneider; A Buecker; Christopher Schneeweis; A Doltra; Markus P. Schlaich; Esler; Eckart Fleck; Michael Böhm; Sebastian Kelle

AIMS Sympathetic stimulation induces left ventricular hypertrophy and is associated with increased cardiovascular risk. Catheter-based renal denervation (RDN) has been shown to reduce sympathetic outflow and blood pressure (BP). The present multi-centre study aimed to investigate the effect of RDN on anatomic and functional myocardial parameters, assessed by cardiac magnetic resonance (CMR), in patients with resistant hypertension. METHODS AND RESULTS Cardiac magnetic resonance was performed in 72 patients (mean age 66 ± 10 years) with resistant hypertension (55 patients underwent RDN, 17 served as controls) at baseline and after 6 months. Clinical data and CMR results were analysed blindly. Renal denervation significantly reduced systolic and diastolic BP by 22/8 mm Hg and left ventricular mass index (LVMI) by 7.1% (46.3 ± 13.6 g/m(1.7) vs. 43.0 ± 12.6 g/m(1.7), P < 0.001) without changes in the control group (41.9 ± 10.8 g/m(1.7) vs. 42.0 ± 9.7 g/m(1.7), P = 0.653). Ejection fraction (LVEF) in patients with impaired LVEF at baseline (<50%) significantly increased after RDN (43% vs. 50%, P < 0.001). Left ventricular circumferential strain as a surrogate of diastolic function in the subgroup of patients with reduced strain at baseline increased by 21% only in the RDN group (-14.8 vs. -17.9; P = 0.001) and not in control patients (-15.5 vs. -16.4, P = 0.508). CONCLUSIONS Catheter-based RDN significantly reduced BP and LVMI and improved EF and circumferential strain in patients with resistant hypertension, occurring partly BP independently.


Hypertension | 2013

Effect of Renal Denervation on Neurohumoral Activation Triggering Atrial Fibrillation in Obstructive Sleep Apnea

Dominik Linz; Mathias Hohl; Alexander Nickel; Felix Mahfoud; Michael Wagner; Sebastian Ewen; Ulrich Schotten; Christoph Maack; Klaus Wirth; Michael Böhm

Obstructive sleep apnea is characterized by repetitive collapses of the upper airway, negative thoracic pressure periods, and intermittent hypoxia, stimulating the autonomic nervous system. The increased sympathetic drive during obstructive sleep apnea results in postapneic blood pressure rises and neurohumoral activation potentially involved in the initiation and progression to permanent atrial fibrillation (AF). In a pig model mimicking obstructive sleep apnea, we studied the effects of repetitive obstructive respiratory events for 4 hours on the occurrence of spontaneous AF episodes, postapneic blood pressure rises, and neurohumoral activation. In addition, renal sympathetic denervation was performed to investigate the impact of the sympathetic nervous system. Repetitive obstructive respiratory events caused pronounced postapneic blood pressure rises, prolonged duration of spontaneous AF episodes triggered by spontaneous atrial beats, and increased plasma renin activity and aldosterone concentrations. This was associated with increased nicotinamide adenine dinucleotide phosphate-oxidase activity, reduced antioxidative capacity, and elevated expression of connective tissue growth factor, a redox-sensitive mediator of fibrosis. Renal sympathetic denervation inhibited postapneic blood pressure rises and decreased plasma renin activity and aldosterone concentrations. The occurrence and duration of spontaneous AF were reduced comparable with a combined pharmacological blockade of angiotensin receptor and &bgr;-adrenoceptor. Increased atrial oxidative stress, together with the activation of profibrotic pathways and intermittent hypoxia, was not attenuated after renal sympathetic denervation. Repetitive obstructive respiratory events triggered spontaneous AF, increased atrial oxidative stress, and activated profibrotic pathways in the atrium. Renal sympathetic denervation reduced spontaneous AF and postapneic blood pressure rises by combined reduction of sympathetic drive and components of the circulating renin–angiotensin system. However, the generation of atrial oxidative stress was not modulated.


Circulation-arrhythmia and Electrophysiology | 2013

Transmural conduction is the predominant mechanism of breakthrough during atrial fibrillation: evidence from simultaneous endo-epicardial high-density activation mapping.

Jens Eckstein; Stef Zeemering; Dominik Linz; Bart Maesen; Sander Verheule; Arne van Hunnik; Harry J.G.M. Crijns; Maurits A. Allessie; Ulrich Schotten

Background—Endo-epicardial dissociation (EED) of electric activations resulting in transmural conduction of fibrillation waves (breakthroughs) has been postulated to contribute to the complexity of the substrate of atrial fibrillation (AF). The aim of this study was to elucidate the correlation between EED and incidence of breakthrough and to test the plausibility of transmural conduction versus ectopic focal discharges as sources of breakthrough. Methods and Results—We analyzed high-resolution simultaneous endo-epicardial in vivo mapping data recorded in left atrial free walls of goats with acute AF, 3 weeks and 6 months of AF (all n=7). Waves were analyzed for number, size, and width and categorized according to their origin outside (peripheral wave) or within the mapping area (breakthrough). Breakthrough incidence was lowest (2.1±1.0%) in acute AF, higher (11.4±6.1%) after 3 weeks (P<0.01 versus acute AF) and highest (14.2±3.8%) after 6 months AF (P<0.001 versus acute AF) and similar in the epicardium and endocardium. Most of the breakthroughs (86%; n=564) could be explained by transmural conduction, whereas only 13% (n=85) could be explained by ectopic focal discharges. Transmural microreentry did not play a role as source of breakthrough. Conclusions—This is the first study to present simultaneous endo-epicardial in vivo mapping data at sites of breakthrough events. Breakthrough incidence and degree of EED increased with increasing AF substrate complexity. In goat left atrial free walls, most of the breakthroughs can be explained by transmural conduction, whereas ectopic focal discharges play a limited role as source of breakthrough.Background— Endo-epicardial dissociation (EED) of electric activations resulting in transmural conduction of fibrillation waves (breakthroughs) has been postulated to contribute to the complexity of the substrate of atrial fibrillation (AF). The aim of this study was to elucidate the correlation between EED and incidence of breakthrough and to test the plausibility of transmural conduction versus ectopic focal discharges as sources of breakthrough. Methods and Results— We analyzed high-resolution simultaneous endo-epicardial in vivo mapping data recorded in left atrial free walls of goats with acute AF, 3 weeks and 6 months of AF (all n=7). Waves were analyzed for number, size, and width and categorized according to their origin outside (peripheral wave) or within the mapping area (breakthrough). Breakthrough incidence was lowest (2.1±1.0%) in acute AF, higher (11.4±6.1%) after 3 weeks ( P <0.01 versus acute AF) and highest (14.2±3.8%) after 6 months AF ( P <0.001 versus acute AF) and similar in the epicardium and endocardium. Most of the breakthroughs (86%; n=564) could be explained by transmural conduction, whereas only 13% (n=85) could be explained by ectopic focal discharges. Transmural microreentry did not play a role as source of breakthrough. Conclusions— This is the first study to present simultaneous endo-epicardial in vivo mapping data at sites of breakthrough events. Breakthrough incidence and degree of EED increased with increasing AF substrate complexity. In goat left atrial free walls, most of the breakthroughs can be explained by transmural conduction, whereas ectopic focal discharges play a limited role as source of breakthrough.

Collaboration


Dive into the Dominik Linz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge