Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominik M. Schulte is active.

Publication


Featured researches published by Dominik M. Schulte.


Journal of Biological Chemistry | 2010

Role of Wnt-5a in the Determination of Human Mesenchymal Stem Cells into Preadipocytes

Roman Bilkovski; Dominik M. Schulte; Frank Oberhauser; Matthias Gomolka; Michael Udelhoven; Moritz M. Hettich; Bernhard Roth; Axel Heidenreich; Christian Gutschow; Wilhelm Krone; Matthias Laudes

Increasing adipocyte size as well as numbers is important in the development of obesity and type 2 diabetes, with adipocytes being generated from mesenchymal precursor cells. This process includes the determination of mesenchymal stem cells (MSC) into preadipocytes (PA) and the differentiation of PA into mature fat cells. Although the process of differentiation has been highly investigated, the determination in humans is poorly understood. In this study, we compared human MSC and human committed PA on a cellular and molecular level to gain further insights into the regulatory mechanisms in the determination process. Both cell types showed similar morphology and expression patterns of common mesenchymal and hematopoietic surface markers. However, although MSC were able to differentiate into adipocytes and osteocytes, PA were only able to undergo adipogenesis, indicating that PA lost their multipotency during determination. WNT-5a expression showed significantly higher levels in MSC compared with PA suggesting that WNT-5a down-regulation might be important in the determination process. Indeed, incubation of human MSC in medium containing neutralizing WNT-5a antibodies abolished their ability to undergo osteogenesis, although adipogenesis was still possible. An opposite effect was achieved using recombinant WNT-5a protein. On a molecular level, WNT-5a was found to promote c-Jun N-terminal kinase-dependent intracellular signaling in MSC. Activation of this noncanonical pathway resulted in the induction of osteopontin expression further indicating pro-osteogenic effects of WNT-5a. Our data suggest that WNT-5a is necessary to maintain osteogenic potential of MSC and that inhibition of WNT-5a signaling therefore plays a role in their determination into PA in humans.


PLOS ONE | 2012

Pro-inflammatory wnt5a and anti-inflammatory sFRP5 are differentially regulated by nutritional factors in obese human subjects.

Dominik M. Schulte; N Müller; Katrin Neumann; Frank Oberhauser; Michael Faust; Heike Güdelhöfer; Burkhard Brandt; Wilhelm Krone; Matthias Laudes

Background Obesity is associated with macrophage infiltration of adipose tissue. These inflammatory cells affect adipocytes not only by classical cytokines but also by the secreted glycopeptide wnt5a. Healthy adipocytes are able to release the wnt5a inhibitor sFRP5. This protective effect, however, was found to be diminished in obesity. The aim of the present study was to examine (1) whether obese human subjects exhibit increased serum concentrations of wnt5a and (2) whether wnt5a and/or sFRP5 serum concentrations in obese subjects can be influenced by caloric restriction. Methodology 23 obese human subjects (BMI 44.1±1.1 kg/m2) and 12 age- and sex-matched lean controls (BMI 22.3±0.4 kg/m2) were included in the study. Obese subjects were treated with a very low-calorie diet (approximately 800 kcal/d) for 12 weeks. Body composition was assessed by impedance analysis, insulin sensitivity was estimated by HOMA-IR and the leptin-to-adiponectin ratio and wnt5a and sFRP5 serum concentrations were measured by ELISA. sFRP5 expression in human adipose tissue biopsies was further determined on protein level by immunohistology. Principal Findings Pro-inflammatory wnt5a was not measurable in any serum sample of lean control subjects. In patients with obesity, however, wnt5a became significantly detectable consistent with low grade inflammation in such subjects. Caloric restriction resulted in a weight loss from 131.9±4.0 to 112.3±3.2 kg in the obese patients group. This was accompanied by a significant decrease of HOMA-IR and leptin-to-adiponectin ratio, indicating improved insulin sensitivity. Interestingly, these metabolic improvements were associated with a significant increase in serum concentrations of the anti-inflammatory factor and wnt5a-inhibitor sFRP5. Conclusions/Significance Obesity is associated with elevated serum levels of pro-inflammatory wnt5a in humans. Furthermore, caloric restriction beneficially affects serum concentrations of anti-inflammatory sFRP5 in such subjects. These findings suggest a novel regulatory system in low grade inflammation in obesity, which can be influenced by nutritional therapy.


Journal of Lipid Research | 2015

IL-6 blockade by monoclonal antibodies inhibits apolipoprotein (a) expression and lipoprotein (a) synthesis in humans

N Müller; Dominik M. Schulte; Kathrin Türk; Sandra Freitag-Wolf; Jochen Hampe; R Zeuner; Johann O. Schröder; Ioanna Gouni-Berthold; Heiner K. Berthold; Wilhelm Krone; Stefan Rose-John; Stefan Schreiber; Matthias Laudes

Lipoprotein (a) [Lp(a)] is a highly atherogenic lipid particle. Although earlier reports suggested that Lp(a) levels are mostly determined by genetic factors, several recent studies have revealed that Lp(a) induction is also caused by chronic inflammation. Therefore, we aimed to examine whether cytokine blockade by monoclonal antibodies may inhibit Lp(a) metabolism. We found that interleukin 6 (IL-6) blockade by tocilizumab (TCZ) reduced Lp(a) while TNF-α-inhibition by adalimumab in humans had no effect. The specificity of IL-6 in regulating Lp(a) was further demonstrated by serological measurements of human subjects (n = 1,153) revealing that Lp(a) levels are increased in individuals with elevated serum IL-6. Transcriptomic analysis of human liver biopsies (n = 57) revealed typical IL-6 response genes being correlated with the LPA gene expression in vivo. On a molecular level, we found that TCZ inhibited IL-6-induced LPA mRNA and protein expression in human hepatocytes. Furthermore, examination of IL-6-responsive signal transducer and activator of transcription 3 binding sites within the LPA promoter by reporter gene assays, promoter deletion experiments, and electrophoretic mobility shift assay analysis showed that the Lp(a)-lowering effect of TCZ is specifically mediated via a responsive element at −46 to −40. Therefore, IL-6 blockade might be a potential therapeutic option to treat elevated Lp(a) serum concentrations in humans and might be a noninvasive alternative to lipid apheresis in the future.


Journal of the American College of Cardiology | 2014

Nonpharmacological Lipoprotein Apheresis Reduces Arterial Inflammation in Familial Hypercholesterolemia

Diederik F. van Wijk; Barbara Sjouke; Amparo L. Figueroa; Hamed Emami; Fleur M. van der Valk; Megan H. MacNabb; Linda C. Hemphill; Dominik M. Schulte; Marion G. Koopman; Mark E. Lobatto; Hein J. Verberne; Zahi A. Fayad; John J. P. Kastelein; Willem J. M. Mulder; G. Kees Hovingh; Ahmed Tawakol; Erik S.G. Stroes

BACKGROUND Patients with familial hypercholesterolemia (FH) are characterized by elevated atherogenic lipoprotein particles, predominantly low-density lipoprotein cholesterol (LDL-C), which is associated with accelerated atherogenesis and increased cardiovascular risk. OBJECTIVES This study used (18)F-fluorodeoxyglucose positron emission tomography ((18)FDG-PET) to investigate whether arterial inflammation is higher in patients with FH and, moreover, whether lipoprotein apheresis attenuates arterial wall inflammation in FH patients. METHODS In total, 38 subjects were recruited: 24 FH patients and 14 normolipidemic controls. All subjects underwent FDG-PET imaging at baseline. Twelve FH patients who met the criteria for lipoprotein apheresis underwent apheresis procedures followed by a second FDG-PET imaging 3 days (range 1 to 4 days) after apheresis. Subsequently, the target-to-background ratio (TBR) of FDG uptake within the arterial wall was assessed. RESULTS In FH patients, the mean arterial TBR was higher compared with healthy controls (2.12 ± 0.27 vs. 1.92 ± 0.19; p = 0.03). A significant correlation was observed between baseline arterial TBR and LDL-C (R = 0.37; p = 0.03) that remained significant after adjusting for statin use (β = 0.001; p = 0.02) and atherosclerosis risk factors (β = 0.001; p = 0.03). LDL-C levels were significantly reduced after lipoprotein apheresis (284 ± 118 mg/dl vs. 127 ± 50 mg/dl; p < 0.001). There was a significant reduction of arterial inflammation after lipoprotein apheresis (TBR: 2.05 ± 0.31 vs. 1.91 ± 0.33; p < 0.02). CONCLUSIONS The arterial wall of FH patients is characterized by increased inflammation, which is markedly reduced after lipoprotein apheresis. This lends support to a causal role of apoprotein B-containing lipoproteins in arterial wall inflammation and supports the concept that lipoprotein-lowering therapies may impart anti-inflammatory effects by reducing atherogenic lipoproteins.


Atherosclerosis | 2013

Pro-atherogenic lipid changes and decreased hepatic LDL receptor expression by tocilizumab in rheumatoid arthritis

Aart C. Strang; Radjesh J. Bisoendial; Ruud S. Kootte; Dominik M. Schulte; Geesje M. Dallinga-Thie; Johannes H.M. Levels; Marc R. Kok; Koen Vos; Sander W. Tas; Uwe J. F. Tietge; N Müller; Matthias Laudes; Danielle M. Gerlag; Erik S.G. Stroes; Paul P. Tak

OBJECTIVES Blocking the interleukin-6 pathway by tocilizumab (TCZ) has been associated with changes in the lipoprotein profile, which could adversely impact cardiovascular (CV) risk in patients with rheumatoid arthritis (RA). In the present study, we addressed the effect of TCZ on lipoproteins in both fasting and non-fasting state in RA patients and tested the effect of TCZ on LDL receptor (LDLr) expression in vitro. METHODS Twenty patients with active RA and an inadequate response to TNF blockers received monthly TCZ intravenously. On week 0, 1 and 6 blood was drawn before and after an oral fat load, the lipid profiles and HDL antioxidative capacity were measured. Effects of TCZ on LDLr expression in transfected HepG2 cells were subjected. RESULTS After 6 weeks of TCZ, total cholesterol increased by 22% (4.8 ± 0.9 to 5.9 ± 1.3 mmol/L; p < 0.001), LDLc by 22% (3.0 ± 0.6 to 3.6 ± 0.8 mmol/L; p < 0.001) and HDLc by 17% (1.4 ± 0.4 to 1.7 ± 0.7 mmol/L; p < 0.016). Fasting triglycerides (TG) increased by 48% (1.0 ± 0.4 to 1.4 ± 0.8 mmol/L; p = 0.011), whereas postprandial incremental area under the curve TG increased by 62% (p = 0.002). Lipid changes were unrelated to the change in disease activity or inflammatory markers. No difference in HDL antioxidative capacity was found. In vitro, LDLr expression in cultured liver cells was significantly decreased following TCZ incubation (P < 0.001). CONCLUSIONS TCZ adversely impacts on both LDLc as well as fasting and postprandial TG in patients with RA. The changes in hepatic LDLr expression following TCZ imply that adverse lipid changes may be a direct hepatic effect of TCZ. The net effect of TCZ on CV-morbidity has to be confirmed in future clinical trials.


Cytokine | 2014

Interleukin-6 and Tumour Necrosis Factor-α differentially regulate lincRNA transcripts in cells of the innate immune system in vivo in human subjects with rheumatoid arthritis

N Müller; Frank Döring; Maja Klapper; Katrin Neumann; Dominik M. Schulte; Kathrin Türk; Johann O. Schröder; R Zeuner; Sandra Freitag-Wolf; Stefan Schreiber; Matthias Laudes

lincRNAs recently have been discovered as evolutionary conserved transcripts of non-coding DNA sequences and have been implicated in the regulation of cellular differentiation. In humans, molecular studies have suggested a functional role for lincRNAs in cancer development. The aim of the present study was to examine whether these novel molecules are specifically regulated by different cytokines in cells of the innate immune system in humans in vivo and whether lincRNAs thereby might be involved in the pathophysiology of rheumatoid arthritis (RA). Therefore, CD14(+) monocytes were isolated from RA patients before and after anti-IL-6R (tocilizumab) or anti-TNF-α (adalimumab) therapy and lincRNA transcription was analysed by a microarray based experiment. As expected, we found lincRNAs to be present in CD14(+) monocytes of RA patients. However, of the total number of 7.419 lincRNAs examined in this study only a very small number was significantly regulated by either IL-6 or TNF-α (85 lincRNAs, corresponding to 1.1%). The numbers of lincRNAs regulated was higher due to TNF-α compared to IL-6. Interestingly, none of the identified lincRNAs was influenced by both, IL-6 and TNF-α, suggesting the regulation of lincRNA transcription to be highly specific for distinct cytokines. Taken together, our results suggest (1) that lincRNAs are novel intracellular molecular effectors of specific cytokines in cells of the innate immune system in humans in vivo and (2) that lincRNAs might be involved in the molecular pathophysiology of RA.


Experimental and Clinical Endocrinology & Diabetes | 2010

Dipeptidyl-Peptidase 4 and Attractin Expression is Increased in Circulating Blood Monocytes of Obese Human Subjects

Matthias Laudes; F. Oberhauser; Dominik M. Schulte; K. Schilbach; S. Freude; R. Bilkovski; O. Schulz; M. Faust; Wilhelm Krone

Dipeptidyl-peptidase (DPP)-4, which catalizes the degradation of the insulinotropic incretin glucagon-like-peptide (GLP)-1, and the DPP-4 like enzyme attractin are involved in activation of T-lymphocytes and monocytes. Recently, it has been demonstrated, that the risk for certain infections is increased in type 2 diabetic patients under DPP-4 inhibitor treatment. The aim of the present study was to examine the expression of DPP-4 and attractin in circulating blood monocytes of obese and type 2 diabetic subjects. Monocytes were isolated by CD14-antibody based magnetic cell sorting from blood samples of 17 lean controls, 20 obese, non-diabetic subjects and 19 obese patients with type 2 diabetes. FACS analysis was performed to test purity of the cell preparations. Expression was measured by multiplex RT-PCR on RNA-level. DPP-4 and attractin were detectable in human circulating monocytes with attractin being expressed at higher levels compared to DPP-4. Both enzymes were significantly higher expressed in circulating blood monocytes of obese subjects compared to lean controls. In contrast, type 2 diabetes did not significantly affect expression levels. Finally, neither DPP-4 nor attractin expression was altered by sitagliptin or insulin treatment. In conclusion, our data demonstrate, that expressions of DPP-4 and attractin in circulating blood monocytes of human subjects are influenced by metabolic abnormalities with obesity being an important factor.


Nanomedicine: Nanotechnology, Biology and Medicine | 2016

Liposomal prednisolone promotes macrophage lipotoxicity in experimental atherosclerosis

Fleur M. van der Valk; Dominik M. Schulte; Svenja Meiler; Jun Tang; Kang He Zheng; Jan Van den Bossche; Tom Seijkens; Matthias Laudes; Menno P.J. de Winther; Esther Lutgens; Amr Alaarg; Josbert M. Metselaar; Geesje M. Dallinga-Thie; Willem J. M. Mulder; Erik S.G. Stroes; Anouk A.J. Hamers

Atherosclerosis is a lipid-driven inflammatory disease, for which nanomedicinal interventions are under evaluation. Previously, we showed that liposomal nanoparticles loaded with prednisolone (LN-PLP) accumulated in plaque macrophages, however, induced proatherogenic effects in patients. Here, we confirmed in low-density lipoprotein receptor knockout (LDLr(-/-)) mice that LN-PLP accumulates in plaque macrophages. Next, we found that LN-PLP infusions at 10mg/kg for 2weeks enhanced monocyte recruitment to plaques. In follow up, after 6weeks of LN-PLP exposure we observed (i) increased macrophage content, (ii) more advanced plaque stages, and (iii) larger necrotic core sizes. Finally, in vitro studies showed that macrophages become lipotoxic after LN-PLP exposure, exemplified by enhanced lipid loading, ER stress and apoptosis. These findings indicate that liposomal prednisolone may paradoxically accelerate atherosclerosis by promoting macrophage lipotoxicity. Hence, future (nanomedicinal) drug development studies are challenged by the multifactorial nature of atherosclerotic inflammation.


Diabetes | 2017

Hypothalamic Inflammation in Human Obesity is Mediated by Environmental and Genetic Factors

Carina Kreutzer; Sönke Peters; Dominik M. Schulte; Daniela Fangmann; Kathrin Türk; Stephan Wolff; Thilo van Eimeren; Markus Ahrens; Jan Beckmann; Clemens Schafmayer; Thomas Becker; Tina Kerby; Axel Rohr; Christian Riedel; Femke-Anouska Heinsen; Frauke Degenhardt; Andre Franke; Philip Rosenstiel; Nana Zubek; Christian H.C.A. Henning; Sandra Freitag-Wolf; Astrid Dempfle; Aristea Psilopanagioti; Helen Petrou-Papadaki; Lennart Lenk; Olav Jansen; Stefan Schreiber; Matthias Laudes

Obesity is associated with hypothalamic inflammation (HI) in animal models. In the current study, we examined the mediobasal hypothalamus (MBH) of 57 obese human subjects and 54 age- and sex- matched nonobese control subjects by MRI and analyzed the T2 hyperintensity as a measure of HI. Obese subjects exhibited T2 hyperintensity in the left but not the right MBH, which was strongly associated with systemic low-grade inflammation. MRS revealed the number of neurons in the left hypothalamic region to be similar in obese versus control subjects, suggesting functional but not structural impairment due to the inflammatory process. To gain mechanistic insights, we performed nutritional analysis and 16S rDNA microbiome sequencing, which showed that high-fat diet induces reduction of Parasutterella sp. in the gut, which is significantly correlated with MBH T2 hyperintensity. In addition to these environmental factors, we found subjects carrying common polymorphisms in the JNK or the MC4R gene to be more susceptible to HI. Finally, in a subgroup analysis, bariatric surgery had no effect on MBH T2 hyperintensity despite inducing significant weight loss and improvement of peripheral insulin sensitivity. In conclusion, obesity in humans is associated with HI and disturbances in the gut-brain axis, which are influenced by both environmental and genetic factors.


Cytokine | 2015

Soluble receptor for advanced glycation end products as a potential biomarker to predict weight loss and improvement of insulin sensitivity by a very low calorie diet of obese human subjects

Imke Hagen; Dominik M. Schulte; N Müller; Jessica Martinsen; Kathrin Türk; Jürgen Hedderich; Stefan Schreiber; Matthias Laudes

INTRODUCTION Obesity is associated with low-grade systemic inflammation which is thought to trigger the development of comorbidities such as type 2 diabetes. The soluble receptor for advanced glycation end products (sRAGE) belongs to the innate immune system and has been linked to obesity, recently. The aim of the present study was to examine whether serum sRAGE concentrations are related to the grade of weight loss and improvement of insulin resistance due to a very low calorie diet (VLCD). METHODS 22 severe obese subjects (Median Body Mass Index (BMI): 44.5kg/m(2)) were included in a dietary intervention study of 6month, consisting of a very low calorie formula diet phase (VLCD: 800kcal/d) for 12 weeks and a following 12 week weight maintenance phase. Fasting glucose, fasting insulin, adiponectin, leptin and sRAGE were determined from sera. Insulin sensitivity was estimated by Homeostasis Model Assessment (HOMA) index and leptin-to-adiponectin-ratio (LAR). RESULTS Mean body weight reduction by VLCD accounted to 21.7kg with a significant improvement of insulin resistance. At baseline, sRAGE serum levels were significantly inversely related to BMI (rS=-0.642, p=0.001) and HOMA (rS=-0.419, p=0.041). Of interest, sRAGE serum levels at baseline were significantly lower in study subjects with greater reduction of BMI (p=0.017). In addition, a significantly greater HOMA reduction was observed in subjects with lower sRAGE serum levels at baseline (p=0.006). Finally, correlation analysis revealed, that changes of sRAGE serum levels were significantly correlated to changes of BMI (rS=-0.650, p=0.022) during intervention. CONCLUSION Anti-inflammatory sRAGE might be a potential future biomarker to predict weight loss and improvement of insulin resistance by a VLCD whereby lower baseline sRAGE serum levels indicate a better outcome of the dietary intervention.

Collaboration


Dive into the Dominik M. Schulte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge