Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominik N. Müller is active.

Publication


Featured researches published by Dominik N. Müller.


Nature Neuroscience | 2013

Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways

Katrin Kierdorf; Daniel Erny; Tobias Goldmann; Victor Sander; Christian Schulz; Elisa Gomez Perdiguero; Peter Wieghofer; Annette Heinrich; Pia Riemke; Christoph Hölscher; Dominik N. Müller; Bruno Luckow; Thomas Brocker; Katharina Debowski; Günter Fritz; Ghislain Opdenakker; Andreas Diefenbach; Knut Biber; Mathias Heikenwalder; Frederic Geissmann; Frank Rosenbauer; Marco Prinz

Microglia are crucial for immune responses in the brain. Although their origin from the yolk sac has been recognized for some time, their precise precursors and the transcription program that is used are not known. We found that mouse microglia were derived from primitive c-kit+ erythromyeloid precursors that were detected in the yolk sac as early as 8 d post conception. These precursors developed into CD45+ c-kitlo CX3CR1− immature (A1) cells and matured into CD45+ c-kit− CX3CR1+ (A2) cells, as evidenced by the downregulation of CD31 and concomitant upregulation of F4/80 and macrophage colony stimulating factor receptor (MCSF-R). Proliferating A2 cells became microglia and invaded the developing brain using specific matrix metalloproteinases. Notably, microgliogenesis was not only dependent on the transcription factor Pu.1 (also known as Sfpi), but also required Irf8, which was vital for the development of the A2 population, whereas Myb, Id2, Batf3 and Klf4 were not required. Our data provide cellular and molecular insights into the origin and development of microglia.


Nature Medicine | 2009

Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C–dependent buffering mechanism

Agnes Machnik; Wolfgang Neuhofer; Jonathan Jantsch; Anke Dahlmann; Tuomas Tammela; Katharina Machura; Joon-Keun Park; Franz-Xaver Beck; Dominik N. Müller; Wolfgang Derer; Jennifer Goss; Agata Ziomber; Peter Dietsch; Hubertus Wagner; Nico van Rooijen; Armin Kurtz; Karl F. Hilgers; Kari Alitalo; Kai-Uwe Eckardt; Friedrich C. Luft; Dontscho Kerjaschki; Jens Titze

In salt-sensitive hypertension, the accumulation of Na+ in tissue has been presumed to be accompanied by a commensurate retention of water to maintain the isotonicity of body fluids. We show here that a high-salt diet (HSD) in rats leads to interstitial hypertonic Na+ accumulation in skin, resulting in increased density and hyperplasia of the lymphcapillary network. The mechanisms underlying these effects on lymphatics involve activation of tonicity-responsive enhancer binding protein (TonEBP) in mononuclear phagocyte system (MPS) cells infiltrating the interstitium of the skin. TonEBP binds the promoter of the gene encoding vascular endothelial growth factor-C (VEGF-C, encoded by Vegfc) and causes VEGF-C secretion by macrophages. MPS cell depletion or VEGF-C trapping by soluble VEGF receptor-3 blocks VEGF-C signaling, augments interstitial hypertonic volume retention, decreases endothelial nitric oxide synthase expression and elevates blood pressure in response to HSD. Our data show that TonEBP–VEGF-C signaling in MPS cells is a major determinant of extracellular volume and blood pressure homeostasis and identify VEGFC as an osmosensitive, hypertonicity-driven gene intimately involved in salt-induced hypertension.


American Journal of Pathology | 2002

Immunosuppressive treatment protects against angiotensin II-induced renal damage.

Dominik N. Müller; Erdenechimeg Shagdarsuren; Joon-Keun Park; Ralf Dechend; Eero Mervaala; Franziska Hampich; Anette Fiebeler; Xinsheng Ju; Piet Finckenberg; Jürgen Theuer; Christiane Viedt; Joerg Kreuzer; Harald Heidecke; Hermann Haller; Martin Zenke; Friedrich C. Luft

Angiotensin (Ang) II promotes renal infiltration by immunocompetent cells in double-transgenic rats (dTGRs) harboring both human renin and angiotensinogen genes. To elucidate disease mechanisms, we investigated whether or not dexamethasone (DEXA) immunosuppression ameliorates renal damage. Untreated dTGRs developed hypertension, renal damage, and 50% mortality at 7 weeks. DEXA reduced albuminuria, renal fibrosis, vascular reactive oxygen stress, and prevented mortality, independent of blood pressure. In dTGR kidneys, p22phox immunostaining co-localized with macrophages and partially with T cells. dTGR dendritic cells expressed major histocompatibility complex II and CD86, indicating maturation. DEXA suppressed major histocompatibility complex II+, CD86+, dendritic, and T-cell infiltration. In additional experiments, we treated dTGRs with mycophenolate mofetil to inhibit T- and B-cell proliferation. Reno-protective actions of mycophenolate mofetil and its effect on dendritic and T cells were similar to those obtained with DEXA. We next investigated whether or not Ang II directly promotes dendritic cell maturation in vitro. Ang II did not alter CD80, CD83, and MHC II expression, but increased CCR7 expression and cell migration. To explore the role of tumor necrosis factor (TNF)-alpha on dendritic cell maturation in vivo, we treated dTGRs with the soluble TNF-alpha receptor etanercept. This treatment had no effect on blood pressure, but decreased albuminuria, nuclear factor-kappaB activation, and infiltration of all immunocompetent cells. These data suggest that immunosuppression prevents dendritic cell maturation and T-cell infiltration in a nonimmune model of Ang II-induced renal damage. Ang II induces dendritic migration directly, whereas in vivo TNF-alpha is involved in dendritic cell infiltration and maturation. Thus, Ang II may initiate events leading to innate and acquired immune response.


Circulation | 2009

Regulatory T Cells Ameliorate Angiotensin II–Induced Cardiac Damage

Heda Kvakan; Markus Kleinewietfeld; Fatimunnisa Qadri; Joon-Keun Park; Robert Fischer; Ines Schwarz; Hans-Peter Rahn; Ralph Plehm; Maren Wellner; Saban Elitok; Petra Gratze; Ralf Dechend; Friedrich C. Luft; Dominik N. Müller

Background— Hypertensive target organ damage, especially cardiac hypertrophy with heart failure and arrhythmia, is a major source of morbidity and mortality. Angiotensin II, a major mediator of hypertension and cardiac damage, has proinflammatory properties. Inflammation and activation of the immune system play a pivotal role in pathogenesis of hypertensive target organ damage. However, the role of immunosuppressive CD4+CD25+ regulatory T (Treg) cells in the pathogenesis of hypertensive target organ damage is unexplored. Methods and Results— We conducted adoptive transfer of Treg cells into angiotensin II–infused hypertensive mice. Treg cell recipients exhibited improved cardiac hypertrophy and less cardiac fibrosis despite sustained hypertension. Amelioration of cardiac morphology was accompanied by an improvement in arrhythmogenic electric remodeling, indicating the functional significance of the enhanced cardiac morphology. Delocalization of the connexin 43 gap junction protein is one of the major pathomechanisms in electric remodeling. Pronounced connexin 43 immunoreactivity was found at the lateral borders of cardiomyocytes in angiotensin II–treated mice. In contrast, connexin 43 was restricted to the intercalated disk regions in sham controls. Surprisingly, angiotensin II+Treg–treated mice showed normal connexin 43 gap junction protein localization. Adoptive Treg cell transfer resulted in a marked reduction in cardiac CD4+, CD8+, and CD69+ cell and macrophage infiltration. Conclusions— Immunosuppressive effects of transferred Treg cells ameliorated cardiac damage and accounted for the improved electric remodeling independently of blood pressure–lowering effects. Our results provide new insights into the pathogenesis of hypertensive cardiac damage and could therefore lead to new therapeutic approaches that involve manipulation of the immune system.


Annals of the Rheumatic Diseases | 2011

Involvement of functional autoantibodies against vascular receptors in systemic sclerosis

Gabriela Riemekasten; Aurélie Philippe; Melanie Näther; Torsten Slowinski; Dominik N. Müller; Harald Heidecke; Marco Matucci-Cerinic; László Czirják; Ivo Lukitsch; M.O. Becker; Angela Kill; Jacob M van Laar; Rusan Catar; Friedrich C. Luft; Gerd R. Burmester; Björn Hegner; Duska Dragun

Background Systemic sclerosis (SSc) features autoimmunity, vasculopathy and tissue fibrosis. The renin-angiotensin and endothelin systems have been implicated in vasculopathy and fibrosis. A role for autoantibody-mediated receptor stimulation is hypothesised, linking three major pathophysiological features consistent with SSc. Methods Serum samples from 478 patients with SSc (298 in the study cohort and 180 from two further independent cohorts), 372 healthy subjects and 311 control-disease subjects were tested for antibodies against angiotensin II type 1 receptor (AT1R) and endothelin-1 type A receptor (ETAR) by solid phase assay. Binding specificities were tested by immunoprecipitation. The biological effects of autoantibodies in microvascular endothelial cells in vitro were also determined, as well as the quantitative differences in autoantibody levels on specific organ involvements and their predictive value for SSc-related mortality. Results Anti-AT1R and anti-ETAR autoantibodies were detected in most patients with SSc. Autoantibodies specifically bound to respective receptors on endothelial cells. Higher levels of both autoantibodies were associated with more severe disease manifestations and predicted SSc-related mortality. Both autoantibodies exert biological effects as they induced extracellular signal-regulated kinase 1/2 phosphorylation and increased transforming growth factor β gene expression in endothelial cells which could be blocked with specific receptor antagonists. Conclusions Functional autoimmunity directed at AT1R and ETAR is common in patients with SSc. AT1R and ETAR autoantibodies could contribute to disease pathogenesis and may serve as biomarkers for risk assessment of disease progression.


American Journal of Pathology | 2003

Angiotensin II induces connective tissue growth factor gene expression via calcineurin-dependent pathways.

Piet Finckenberg; Kaija Inkinen; Juhani Ahonen; Saara Merasto; Marjut Louhelainen; Heikki Vapaatalo; Dominik N. Müller; Detlev Ganten; Friedrich C. Luft; Eero Mervaala

Connective tissue growth factor (CTGF) is a polypeptide implicated in the extracellular matrix synthesis. Previous studies have provided evidence that angiotensin II (Ang II) promotes collagen synthesis and regulates collagen degradation. We investigated whether or not CTGF mediates the profibrotic effects of Ang II in the heart and kidneys and the role of calcineurin-dependent pathways in CTGF gene regulation. In transgenic rats harboring human renin and angiotensinogen genes, Ang II induced an age-dependent increase in myocardial CTGF expression, which was 3.5-fold greater compared to normotensive Sprague Dawley (SD) rats. CTGF overexpression correlated closely with the Ang II-induced rise in blood pressure. CTGF mRNA and protein were located predominantly in areas with leukocyte infiltration, myocardial, and vascular lesions and co-localized with TGFbeta(1), collagen I, and collagen III mRNA expressions. Ang II induced CTGF mRNA and protein to a lesser extent in the kidneys, predominantly in glomeruli, arterioles, and in the interstitium with ample inflammation. However, no expression was found in the right ventricle or pulmonary arteries. Blockade of calcineurin activity by cyclosporine A completely normalized Ang II-induced CTGF overexpression in heart and kidney, suppressed the inflammatory response, and mitigated Ang II-induced cell proliferation and apoptosis. In contrast, blockade of mTOR (target of rapamycin) pathway by everolimus, further increased the expression of CTGF even though everolimus ameliorated cell proliferation and T-cell-mediated inflammation. Our findings provide evidence that CTGF mediates Ang II-induced fibrosis in the heart and kidneys via blood pressure and calcineurin-dependent pathways.


Current Allergy and Asthma Reports | 2014

Role of "Western diet" in inflammatory autoimmune diseases.

Arndt Manzel; Dominik N. Müller; David A. Hafler; Susan E. Erdman; Ralf A. Linker; Markus Kleinewietfeld

Developed societies, although having successfully reduced the burden of infectious disease, constitute an environment where metabolic, cardiovascular, and autoimmune diseases thrive. Living in westernized countries has not fundamentally changed the genetic basis on which these diseases emerge, but has strong impact on lifestyle and pathogen exposure. In particular, nutritional patterns collectively termed the “Western diet”, including high-fat and cholesterol, high-protein, high-sugar, and excess salt intake, as well as frequent consumption of processed and ‘fast foods’, promote obesity, metabolic syndrome, and cardiovascular disease. These factors have also gained high interest as possible promoters of autoimmune diseases. Underlying metabolic and immunologic mechanisms are currently being intensively explored. This review discusses the current knowledge relative to the association of “Western diet” with autoimmunity, and highlights the role of T cells as central players linking dietary influences to autoimmune pathology.


Hypertension | 2010

Mononuclear Phagocyte System Depletion Blocks Interstitial Tonicity-Responsive Enhancer Binding Protein/Vascular Endothelial Growth Factor C Expression and Induces Salt-Sensitive Hypertension in Rats

Agnes Machnik; Anke Dahlmann; Christoph W. Kopp; Jennifer Goss; Hubertus Wagner; N. van Rooijen; Kai-Uwe Eckardt; Dominik N. Müller; Joon-Keun Park; Friedrich C. Luft; Dontscho Kerjaschki; Jens Titze

We showed recently that mononuclear phagocyte system (MPS) cells provide a buffering mechanism for salt-sensitive hypertension by driving interstitial lymphangiogenesis, modulating interstitial Na+ clearance, and increasing endothelial NO synthase protein expression in response to very high dietary salt via a tonicity-responsive enhancer binding protein/vascular endothelial growth factor C regulatory mechanism. We now tested whether isotonic saline and deoxycorticosterone acetate (DOCA)-salt treatment leads to a similar regulatory response in Sprague-Dawley rats. Male rats were fed a low-salt diet and received tap water (low-salt diet LSD), 1.0% saline (high-salt diet HSD), or DOCA+1.0% saline (DOCA-HSD). To test the regulatory role of interstitial MPS cells, we further depleted MPS cells with clodronate liposomes. HSD and DOCA-HSD led to Na+ accumulation in the skin, MPS-driven tonicity-responsive enhancer binding protein/vascular endothelial growth factor C–mediated hyperplasia of interstitial lymph capillaries, and increased endothelial NO synthase protein expression in skin interstitium. Clodronate liposome MPS cell depletion blocked MPS infiltration in the skin interstitium, resulting in unchanged tonicity-responsive enhance binding protein/vascular endothelial growth factor C levels and absent hyperplasia of the lymph capillary network. Moreover, no increased skin endothelial NO synthase protein expression occurred in either clodronate liposome–treated HSD or DOCA-salt rats. Thus, absence of the MPS-cell regulatory response converted a salt-resistant blood-pressure state to a salt-sensitive state in HSD rats. Furthermore, salt-sensitive hypertension in DOCA-salt rats was aggravated. We conclude that MPS cells act as onsite controllers of interstitial volume and blood pressure homeostasis, providing a local regulatory salt-sensitive tonicity-responsive enhancer binding protein/vascular endothelial growth factor C–mediated mechanism in the skin to maintain normal blood pressure in states of interstitial Na+ and Cl− accumulation. Failure of this physiological extrarenal regulatory mechanism leads to a salt-sensitive blood pressure response.


American Journal of Pathology | 2004

A Peroxisome Proliferator-Activated Receptor-α Activator Induces Renal CYP2C23 Activity and Protects from Angiotensin II-Induced Renal Injury

Dominik N. Müller; Juergen Theuer; Erdenechimeg Shagdarsuren; Eva Kaergel; Horst Honeck; Joon-Keun Park; Marija Markovic; Eduardo Barbosa-Sicard; Ralf Dechend; Maren Wellner; Torsten Kirsch; Anette Fiebeler; Michael Rothe; Hermann Haller; Friedrich C. Luft; Wolf-Hagen Schunck

Cytochrome P450 (CYP)-dependent arachidonic acid (AA) metabolites are involved in the regulation of renal vascular tone and salt excretion. The epoxygenation product 11,12-epoxyeicosatrienoic acid (EET) is anti-inflammatory and inhibits nuclear factor-κB activation. We tested the hypothesis that the peroxisome proliferator-activated receptor-α-activator fenofibrate (Feno) induces CYP isoforms, AA hydroxylation, and epoxygenation activity, and protects against inflammatory organ damage. Double-transgenic rats (dTGRs) overexpressing human renin and angiotensinogen genes were treated with Feno. Feno normalized blood pressure, albuminuria, reduced nuclear factor-κB activity, and renal leukocyte infiltration. Renal epoxygenase activity was lower in dTGRs compared to nontransgenic rats. Feno strongly induced renal CYP2C23 protein and AA-epoxygenase activity under pathological and nonpathological conditions. In both cases, CYP2C23 was themajor isoform responsible for 11,12-EET formation. Moreover, we describe a novel CYP2C23-dependent pathway leading to hydroxy-EETs (HEETs), which may serve as endogenous peroxisome proliferator-activated receptor-α activators. The capacity to produce HEETs via CYP2C23-dependent epoxygenation of 20-HETE and CYP4A-dependent hydroxylation of EETs was reduced in dTGR kidneys and induced by Feno. These results demonstrate that Feno protects against angiotensin II-induced renal damage and acts as inducer of CYP2C23-mediated epoxygenase activities. We propose that CYP-dependent EET/HEET production may serve as an anti-inflammatory control mechanism.


Cell Metabolism | 2015

Cutaneous Na+ Storage Strengthens the Antimicrobial Barrier Function of the Skin and Boosts Macrophage-Driven Host Defense

Jonathan Jantsch; Valentin Schatz; Diana Friedrich; Agnes Schröder; Christoph W. Kopp; Isabel Siegert; Andreas Maronna; David Wendelborn; Peter Linz; Katrina J. Binger; Matthias Gebhardt; Matthias Heinig; Patrick Neubert; Fabian Fischer; Stefan Teufel; Jean-Pierre David; Clemens Neufert; Alexander Cavallaro; Natalia Rakova; Christoph Küper; Franz-Xaver Beck; Wolfgang Neuhofer; Dominik N. Müller; Gerold Schuler; Michael Uder; Christian Bogdan; Friedrich C. Luft; Jens Titze

Immune cells regulate a hypertonic microenvironment in the skin; however, the biological advantage of increased skin Na(+) concentrations is unknown. We found that Na(+) accumulated at the site of bacterial skin infections in humans and in mice. We used the protozoan parasite Leishmania major as a model of skin-prone macrophage infection to test the hypothesis that skin-Na(+) storage facilitates antimicrobial host defense. Activation of macrophages in the presence of high NaCl concentrations modified epigenetic markers and enhanced p38 mitogen-activated protein kinase (p38/MAPK)-dependent nuclear factor of activated T cells 5 (NFAT5) activation. This high-salt response resulted in elevated type-2 nitric oxide synthase (Nos2)-dependent NO production and improved Leishmania major control. Finally, we found that increasing Na(+) content in the skin by a high-salt diet boosted activation of macrophages in a Nfat5-dependent manner and promoted cutaneous antimicrobial defense. We suggest that the hypertonic microenvironment could serve as a barrier to infection.

Collaboration


Dive into the Dominik N. Müller's collaboration.

Top Co-Authors

Avatar

Friedrich C. Luft

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Ralf Dechend

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anette Fiebeler

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florian Herse

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Ralf A. Linker

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Lajos Markó

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge