Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominik Schenten is active.

Publication


Featured researches published by Dominik Schenten.


Cell Metabolism | 2009

MyD88 Signaling in the CNS Is Required for Development of Fatty Acid-Induced Leptin Resistance and Diet-Induced Obesity

André Kleinridders; Dominik Schenten; A. Christine Könner; Bengt F. Belgardt; Jan Mauer; Tomoo Okamura; F. Thomas Wunderlich; Ruslan Medzhitov; Jens C. Brüning

Obesity-associated activation of inflammatory pathways represents a key step in the development of insulin resistance in peripheral organs, partially via activation of TLR4 signaling by fatty acids. Here, we demonstrate that palmitate acting in the central nervous system (CNS) inhibits leptin-induced anorexia and Stat3 activation. To determine the functional significance of TLR signaling in the CNS in the development of leptin resistance and diet-induced obesity in vivo, we have characterized mice deficient for the TLR adaptor molecule MyD88 in the CNS (MyD88(DeltaCNS)). Compared to control mice, MyD88(DeltaCNS) mice are protected from high-fat diet (HFD)-induced weight gain, from the development of HFD-induced leptin resistance, and from the induction of leptin resistance by acute central application of palmitate. Moreover, CNS-restricted MyD88 deletion protects from HFD- and icv palmitate-induced impairment of peripheral glucose metabolism. Thus, we define neuronal MyD88-dependent signaling as a key regulator of diet-induced leptin and insulin resistance in vivo.


Nature | 2014

Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness.

Joseph M. Pickard; Corinne F. Maurice; Melissa A. Kinnebrew; Michael C. Abt; Dominik Schenten; Tatyana V. Golovkina; Said R. Bogatyrev; Rustem F. Ismagilov; Eric G. Pamer; Peter J. Turnbaugh; Alexander V. Chervonsky

Systemic infection induces conserved physiological responses that include both resistance and ‘tolerance of infection’ mechanisms. Temporary anorexia associated with an infection is often beneficial, reallocating energy from food foraging towards resistance to infection or depriving pathogens of nutrients. However, it imposes a stress on intestinal commensals, as they also experience reduced substrate availability; this affects host fitness owing to the loss of caloric intake and colonization resistance (protection from additional infections). We hypothesized that the host might utilize internal resources to support the gut microbiota during the acute phase of the disease. Here we show that systemic exposure to Toll-like receptor (TLR) ligands causes rapid α(1,2)-fucosylation of small intestine epithelial cells (IECs) in mice, which requires the sensing of TLR agonists, as well as the production of interleukin (IL)-23 by dendritic cells, activation of innate lymphoid cells and expression of fucosyltransferase 2 (Fut2) by IL-22-stimulated IECs. Fucosylated proteins are shed into the lumen and fucose is liberated and metabolized by the gut microbiota, as shown by reporter bacteria and community-wide analysis of microbial gene expression. Fucose affects the expression of microbial metabolic pathways and reduces the expression of bacterial virulence genes. It also improves host tolerance of the mild pathogen Citrobacter rodentium. Thus, rapid IEC fucosylation appears to be a protective mechanism that utilizes the host’s resources to maintain host–microbial interactions during pathogen-induced stress.


Advances in Immunology | 2011

The control of adaptive immune responses by the innate immune system.

Dominik Schenten; Ruslan Medzhitov

The mammalian immune system comprises an adaptive and an innate component. The innate immune system employs a limited number of germ-line-encoded pattern-recognition receptors (PRRs) that recognize invariant pathogen-associated molecular patterns (PAMPs). In contrast, the adaptive immune system depends on the generation of a diverse repertoire of antigen receptors on T and B lymphocytes and subsequent activation and clonal expansion of cells carrying the appropriate antigen-specific receptors. Induction of adaptive immunity not only depends on direct antigen recognition by the antigen receptors but also relies on essential signals that are delivered by the innate immune system. In recent years, we have witnessed the discovery of a still expanding array of different PRR systems that govern the generation of adaptive immunity. Here, we review our current understanding of innate control of adaptive immunity. In particular, we discuss how PRRs initiate adaptive immune responses in general, discuss specific mechanisms that shape the ensuing T and B cell responses, and highlight open questions that are still awaiting answers.


Journal of Virology | 2000

The Level of CD4 Expression Limits Infection of Primary Rhesus Monkey Macrophages by a T-Tropic Simian Immunodeficiency Virus and Macrophagetropic Human Immunodeficiency Viruses

Norbert Bannert; Dominik Schenten; Stewart Craig; Joseph Sodroski

ABSTRACT The entry of primate immunodeficiency viruses into cells is dependent on the interaction of the viral envelope glycoproteins with receptors, CD4, and specific members of the chemokine receptor family. Although in many cases the tropism of these viruses is explained by the qualitative pattern of coreceptor expression, several instances have been observed where the expression of a coreceptor on the cell surface is not sufficient to allow infection by a virus that successfully utilizes the coreceptor in a different context. For example, both the T-tropic simian immunodeficiency virus (SIV) SIVmac239 and the macrophagetropic (M-tropic) SIVmac316 can utilize CD4 and CCR5 as coreceptors, and both viruses can infect primary T lymphocytes, yet only SIVmac316 can efficiently infect CCR5-expressing primary macrophages from rhesus monkeys. Likewise, M-tropic strains of human immunodeficiency virus type 1 (HIV-1) do not infect primary rhesus monkey macrophages efficiently. Here we show that the basis of this restriction is the low level of CD4 on the surface of these cells. Overexpression of human or rhesus monkey CD4 in primary rhesus monkey macrophages allowed infection by both T-tropic and M-tropic SIV and by primary M-tropic HIV-1. By contrast, CCR5 overexpression did not specifically compensate for the inefficient infection of primary monkey macrophages by T-tropic SIV or M-tropic HIV-1. Apparently, the limited ability of these viruses to utilize a low density of CD4 for target cell entry accounts for the restriction of these viruses in primary rhesus monkey macrophages.


Blood | 2011

B cells lacking the tumor suppressor TNFAIP3/A20 display impaired differentiation and hyperactivation and cause inflammation and autoimmunity in aged mice.

Yuanyuan Chu; J. Christoph Vahl; Dilip Kumar; Klaus Heger; Arianna Bertossi; Edyta Wójtowicz; Valeria Soberon; Dominik Schenten; Brigitte Mack; Miriam Reutelshöfer; Rudi Beyaert; Kerstin Amann; Geert van Loo; Marc Schmidt-Supprian

The ubiquitin-editing enzyme A20/TNFAIP3 is essential for controlling signals inducing the activation of nuclear factor-κB transcription factors. Polymorphisms and mutations in the TNFAIP3 gene are linked to various human autoimmune conditions, and inactivation of A20 is a frequent event in human B-cell lymphomas characterized by constitutive nuclear factor-κB activity. Through B cell-specific ablation in the mouse, we show here that A20 is required for the normal differentiation of the marginal zone B and B1 cell subsets. However, loss of A20 in B cells lowers their activation threshold and enhances proliferation and survival in a gene-dose-dependent fashion. Through the expression of proinflammatory cytokines, most notably interleukin-6, A20-deficient B cells trigger a progressive inflammatory reaction in naive mice characterized by the expansion of myeloid cells, effector-type T cells, and regulatory T cells. This culminates in old mice in an autoimmune syndrome characterized by splenomegaly, plasma cell hyperplasia, and the presence of class-switched, tissue-specific autoantibodies.


Immunity | 2013

Bee Venom Phospholipase A2 Induces a Primary Type 2 Response that Is Dependent on the Receptor ST2 and Confers Protective Immunity

Noah W. Palm; Rachel K. Rosenstein; Shuang Yu; Dominik Schenten; Esther Florsheim; Ruslan Medzhitov

Venoms consist of toxic components that are delivered to their victims via bites or stings. Venoms also represent a major class of allergens in humans. Phospholipase A2 (PLA2) is a conserved component of venoms from multiple species and is the major allergen in bee venom. Here we examined how bee venom PLA2 is sensed by the innate immune system and induces a type 2 immune response in mice. We found that bee venom PLA2 induced a T helper type 2 (Th2) cell-type response and group 2 innate lymphoid cell activation via the enzymatic cleavage of membrane phospholipids and release of interleukin-33. Furthermore, we showed that the IgE response to PLA2 could protect mice from future challenge with a near-lethal dose of PLA2. These data suggest that the innate immune system can detect the activity of a conserved component of venoms and induce a protective immune response against a venom toxin.


Nature Communications | 2012

MyD88 signalling in colonic mononuclear phagocytes drives colitis in IL-10 deficient mice

Namiko Hoshi; Dominik Schenten; Simone A. Nish; Zenta Walther; Nicola Gagliani; Richard A. Flavell; Boris Reizis; Zeli Shen; James G. Fox; Akiko Iwasaki; Ruslan Medzhitov

Commensal bacterial sensing by Toll-like receptors (TLRs) is critical for maintaining intestinal homeostasis, but can lead to colitis in the absence of IL-10. While TLRs are expressed in multiple cell types in the colon, the cell type(s) responsible for the development of colitis currently unknown. Here, we generated mice that are selectively deficient in MyD88 in various cellular compartments in an IL-10−/− setting. While epithelial expression of MyD88 was dispensable, MyD88 expression in the mononuclear phagocyte (MNP) compartment was required for colitis development. Specifically, phenotypically distinct populations of colonic MNPs expressed high levels IL-1β, IL-23 and IL-6 and promoted Th17 responses in the absence of IL-10. Thus, gut bacterial sensing through MyD88 in MNPs drives inflammatory bowel disease (IBD) when unopposed by IL-10.


Journal of Experimental Medicine | 2012

IL-1R–MyD88 signaling in keratinocyte transformation and carcinogenesis

Christophe Cataisson; Rosalba Salcedo; Shakeeb Hakim; B. Andrea Moffitt; Lisa Wright; Ming Yi; Robert M. Stephens; Ren-Ming Dai; Lyudmila Lyakh; Dominik Schenten; H. Stuart Yuspa; Giorgio Trinchieri

Keratinocyte MyD88 is a component of an IL-1α–IL-1R autocrine loop that drives Ras-mediated transformation in vitro and contributes to skin tumor formation in vivo.


Immunity | 2014

Signaling through the Adaptor Molecule MyD88 in CD4+ T Cells Is Required to Overcome Suppression by Regulatory T Cells

Dominik Schenten; Simone A. Nish; Shuang Yu; Xiting Yan; Heung Kyu Lee; Igor E. Brodsky; Lesley Pasman; Brian Yordy; F. Thomas Wunderlich; Jens C. Brüning; Hongyu Zhao; Ruslan Medzhitov

Innate immune recognition controls adaptive immune responses through multiple mechanisms. The MyD88 signaling adaptor operates in many cell types downstream of Toll-like receptors (TLRs) and interleukin-1 (IL-1) receptor family members. Cell-type-specific functions of MyD88 signaling remain poorly characterized. Here, we have shown that the T cell-specific ablation of MyD88 in mice impairs not only T helper 17 (Th17) cell responses, but also Th1 cell responses. MyD88 relayed signals of TLR-induced IL-1, which became dispensable for Th1 cell responses in the absence of T regulatory (Treg) cells. Treg cell-specific ablation of MyD88 had no effect, suggesting that IL-1 acts on naive CD4(+) T cells instead of Treg cells themselves. Together, these findings demonstrate that IL-1 renders naive CD4(+) T cells refractory to Treg cell-mediated suppression in order to allow their differentiation into Th1 cells. In addition, IL-1 was also important for the generation of functional CD4(+) memory T cells.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Aging Enhances the Basal Production of IL-6 and CCL2 in Vascular Smooth Muscle Cells

Yang Song; Hua Shen; Dominik Schenten; Peiying Shan; Patty J. Lee; Daniel R. Goldstein

Objective— Increased circulating cytokine levels are a prominent feature of aging that may contribute to atherosclerosis. However, the role vascular cells play in chronic inflammation induced by aging is not clear. Here, we examined the role of aging on inflammatory responses of vascular cells. Methods and Results— In an ex vivo culture system, we examined the inflammatory response of aortas from young (2–4 months) and aged (16–18 months) mice under nonstimulatory conditions. We found that basal levels of interleukin-6 were increased in aged aortas. Aged aortic vascular smooth muscle cells (VSMC) exhibited a higher basal secretion of interleukin-6 than young VSMC. Gene and protein expression analysis revealed that aged VSMC exhibited upregulation of chemokines (eg, CCL2), adhesion molecules (eg, intracellular adhesion molecule 1), and innate immune receptors (eg, Toll-like receptor [TLR] 4), which all contribute to atherosclerosis. Using VSMC from aged TL4−/− and Myd88−/− mice, we demonstrate that signaling via TLR4 and its signal adaptor, MyD88, are in part responsible for the age-elevated basal interleukin-6 response. Conclusion— Aging induces a proinflammatory phenotype in VSMC due in part to increased signaling of TLR4 and MyD88. Our results provide a potential explanation as to why aging leads to chronic inflammation and enhanced atherosclerosis.

Collaboration


Dive into the Dominik Schenten's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge