Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominik Schwudke is active.

Publication


Featured researches published by Dominik Schwudke.


PLOS ONE | 2009

Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients.

Juergen Graessler; Dominik Schwudke; Peter Schwarz; Ronny Herzog; Andrej Shevchenko; Stefan R. Bornstein

Background Dyslipoproteinemia, obesity and insulin resistance are integrative constituents of the metabolic syndrome and are major risk factors for hypertension. The objective of this study was to determine whether hypertension specifically affects the plasma lipidome independently and differently from the effects induced by obesity and insulin resistance. Methodology/Principal Findings We screened the plasma lipidome of 19 men with hypertension and 51 normotensive male controls by top-down shotgun profiling on a LTQ Orbitrap hybrid mass spectrometer. The analysis encompassed 95 lipid species of 10 major lipid classes. Obesity resulted in generally higher lipid load in blood plasma, while the content of tri- and diacylglycerols increased dramatically. Insulin resistance, defined by HOMA-IR >3.5 and controlled for BMI, had little effect on the plasma lipidome. Importantly, we observed that in blood plasma of hypertensive individuals the overall content of ether lipids decreased. Ether phosphatidylcholines and ether phosphatidylethanolamines, that comprise arachidonic (20∶4) and docosapentaenoic (22∶5) fatty acid moieties, were specifically diminished. The content of free cholesterol also decreased, although conventional clinical lipid homeostasis indices remained unaffected. Conclusions/Significance Top-down shotgun lipidomics demonstrated that hypertension is accompanied by specific reduction of the content of ether lipids and free cholesterol that occurred independently of lipidomic alterations induced by obesity and insulin resistance. These results may form the basis for novel preventive and dietary strategies alleviating the severity of hypertension.


Genome Biology | 2011

A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language

Ronny Herzog; Dominik Schwudke; Kai Schuhmann; Julio L. Sampaio; Stefan R. Bornstein; Michael Schroeder; Andrej Shevchenko

Shotgun lipidome profiling relies on direct mass spectrometric analysis of total lipid extracts from cells, tissues or organisms and is a powerful tool to elucidate the molecular composition of lipidomes. We present a novel informatics concept of the molecular fragmentation query language implemented within the LipidXplorer open source software kit that supports accurate quantification of individual species of any ionizable lipid class in shotgun spectra acquired on any mass spectrometry platform.


PLOS ONE | 2012

LipidXplorer: A Software for Consensual Cross-Platform Lipidomics

Ronny Herzog; Kai Schuhmann; Dominik Schwudke; Julio L. Sampaio; Stefan R. Bornstein; Michael Schroeder; Andrej Shevchenko

LipidXplorer is the open source software that supports the quantitative characterization of complex lipidomes by interpreting large datasets of shotgun mass spectra. LipidXplorer processes spectra acquired on any type of tandem mass spectrometers; it identifies and quantifies molecular species of any ionizable lipid class by considering any known or assumed molecular fragmentation pathway independently of any resource of reference mass spectra. It also supports any shotgun profiling routine, from high throughput top-down screening for molecular diagnostic and biomarker discovery to the targeted absolute quantification of low abundant lipid species. Full documentation on installation and operation of LipidXplorer, including tutorial, collection of spectra interpretation scripts, FAQ and user forum are available through the wiki site at: https://wiki.mpi-cbg.de/wiki/lipidx/index.php/Main_Page.


Cold Spring Harbor Perspectives in Biology | 2011

Shotgun lipidomics on high resolution mass spectrometers.

Dominik Schwudke; Kai Schuhmann; Ronny Herzog; Stefan R. Bornstein; Andrej Shevchenko

Despite their compositional complexity, lipidomes comprise a large number of isobaric species that cannot be distinguished by conventional low resolution mass spectrometry and therefore in-depth MS/MS analysis was required for their accurate quantification. Here we argue that the progress in high resolution mass spectrometry is changing the concept of lipidome characterization. Because exact masses of isobaric species belonging to different lipid classes are not necessarily identical, they can now be distinguished and directly quantified in total lipid extracts. By streamlining and simplifying the molecular characterization of lipidomes, high resolution mass spectrometry has developed into a generic tool for cell biology and molecular medicine.


Methods in Enzymology | 2007

Shotgun Lipidomics by Tandem Mass Spectrometry under Data-Dependent Acquisition Control

Dominik Schwudke; Gerhard Liebisch; Ronny Herzog; Gerd Schmitz; Andrej Shevchenko

Data-dependent acquisition of full MS/MS spectra from all detectable (or, alternatively, preselected) lipid precursors produces a rich data set, whose subsequent interpretation by the dedicated software LipidInspector emulates the simultaneous acquisition of an unlimited number of precursor and neutral loss scans in a single analysis. Using logical operations, emulated scans can be combined into highly specific data interpretation routines (termed Boolean scans) enabling in-depth structural characterization of fragmented precursors. Alternatively, a small number of preselected precursors can be fragmented regardless of their relative intensities in survey spectra, hence emulating selected reaction monitoring (SRM) analysis that attains both high detection specificity and sensitivity. Although the data-dependent acquisition approach is, in principle, cross-platform, it benefits from the high mass resolution capacity of hybrid tandem mass spectrometers with time-of-flight and, especially, Fourier transform or Orbitrap analyzers.


Analytical Chemistry | 2011

Bottom-up shotgun lipidomics by higher energy collisional dissociation on LTQ Orbitrap mass spectrometers.

Kai Schuhmann; Ronny Herzog; Dominik Schwudke; Wolfgang Metelmann-Strupat; Stefan R. Bornstein; Andrej Shevchenko

Higher energy collision dissociation (HCD) is a complementary fragmentation tool that has recently become available on mass spectrometers of the LTQ Orbitrap family. We report on a shotgun bottom-up lipidomics approach that relies on HCD of the isolated lipid precursors. HCD, together with the high mass resolution and mass accuracy of the Orbitrap analyzer, improved the confidence of molecular species assignment and accuracy of their quantification in total lipid extracts. These capabilities were particularly important for accounting for biologically interesting lipid species comprising polyunsaturated and odd numbered fatty acid moieties. We argue that now both bottom-up and top-down shotgun lipidomics could be performed on the same instrumentation platform.


Journal of Biological Chemistry | 2003

The Obligate PredatoryBdellovibrio bacteriovorusPossesses a Neutral Lipid A Containing α-D-Mannoses That Replace Phosphate Residues: SIMILARITIES AND DIFFERENCES BETWEEN THE LIPID As AND THE LIPOPOLYSACCHARIDES OF THE WILD TYPE STRAINB. BACTERIOVORUSHD100 AND ITS HOST-INDEPENDENT DERIVATIVE HI100

Dominik Schwudke; Michael W. Linscheid; Eckhard Strauch; Bernd Appel; Ulrich Zähringer; Hermann Moll; Mareike Müller; Lothar Brecker; Sabine Gronow; Buko Lindner

Bdellovibrio bacteriovorus are predatory bacteria that penetrate Gram-negative bacteria and grow intraperiplasmically at the expense of the prey. It was suggested that B. bacteriovorus partially degrade and reutilize lipopolysaccharide (LPS) of the host, thus synthesizing an outer membrane containing structural elements of the prey. According to this hypothesis a host-independent mutant should possess a chemically different LPS. Therefore, the lipopolysaccharides of B. bacteriovorus HD100 and its host-independent derivative B. bacteriovorus HI100 were isolated and characterized by SDS-polyacrylamide gel electrophoresis, immunoblotting, and mass spectrometry. LPS of both strains were identified as smooth-form LPS with different repeating units. The lipid As were isolated after mild acid hydrolysis and their structures were determined by chemical analysis, by mass spectrometric methods, and by NMR spectroscopy. Both lipid As were characterized by an unusual chemical structure, consisting of a β-(1→6)-linked 2,3-diamino-2,3-dideoxy-d-glucopyranose disaccharide carrying six fatty acids that were all hydroxylated. Instead of phosphate groups substituting position O-1 of the reducing and O-4′ of the nonreducing end α-d-mannopyranose residues were found in these lipid As. Thus, they represent the first lipid As completely missing negatively charged groups. A reduced endotoxic activity as determined by cytokine induction from human macrophages was shown for this novel structure. Only minor differences with respect to fatty acids were detected between the lipid As of the host-dependent wild type strain HD100 and for its host-independent derivative HI100. From the results of the detailed analysis it can be concluded that the wild type strain HD100 synthesizes an innate LPS.


Development | 2010

Survival strategies of a sterol auxotroph

Maria Carvalho; Dominik Schwudke; Julio L. Sampaio; Wilhelm Palm; Isabelle Riezman; Gautam Dey; Gagan D. Gupta; Satyajit Mayor; Howard Riezman; Andrej Shevchenko; Teymuras V. Kurzchalia; Suzanne Eaton

The high sterol concentration in eukaryotic cell membranes is thought to influence membrane properties such as permeability, fluidity and microdomain formation. Drosophila cannot synthesize sterols, but do require them for development. Does this simply reflect a requirement for sterols in steroid hormone biosynthesis, or is bulk membrane sterol also essential in Drosophila? If the latter is true, how do they survive fluctuations in sterol availability and maintain membrane homeostasis? Here, we show that Drosophila require both bulk membrane sterol and steroid hormones in order to complete adult development. When sterol availability is restricted, Drosophila larvae modulate their growth to maintain membrane sterol levels within tight limits. When dietary sterol drops below a minimal threshold, larvae arrest growth and development in a reversible manner. Strikingly, membrane sterol levels in arrested larvae are dramatically reduced (dropping sixfold on average) in most tissues except the nervous system. Thus, sterols are dispensable for maintaining the basic membrane biophysical properties required for cell viability; these functions can be performed by non-sterol lipids when sterols are unavailable. However, bulk membrane sterol is likely to have essential functions in specific tissues during development. In tissues in which sterol levels drop, the overall level of sphingolipids increases and the proportion of different sphingolipid variants is altered. These changes allow survival, but not growth, when membrane sterol levels are low. This relationship between sterols and sphingolipids could be an ancient and conserved principle of membrane homeostasis.


Journal of Biological Chemistry | 2008

LET-767 Is Required for the Production of Branched Chain and Long Chain Fatty Acids in Caenorhabditis elegans

Eugeni V. Entchev; Dominik Schwudke; Vyacheslav Zagoriy; Vitali Matyash; Aliona Bogdanova; Bianca Habermann; Lin Zhu; Andrej Shevchenko; Teymuras V. Kurzchalia

LET-767 from Caenorhabditis elegans belongs to a family of short chain dehydrogenases/reductases and is homologous to 17β-hydroxysterol dehydrogenases of type 3 and 3-ketoacyl-CoA reductases. Worms subjected to RNA interference (RNAi) of let-767 displayed multiple growth and developmental defects in the first generation and arrested in the second generation as L1 larvae. To determine the function of LET-767 in vivo, we exploited a biochemical complementation approach, in which let-767 (RNAi)-arrested larvae were rescued by feeding with compounds isolated from wild type worms. The arrest was only rescued by the addition of triacylglycerides extracted from worms but not from various natural sources, such as animal fats and plant oils. The mass spectrometric analyses showed alterations in the fatty acid content of triacylglycerides. Essential for the rescue were odd-numbered fatty acids with monomethyl branched chains. The rescue was improved when worms were additionally supplemented with long chain even-numbered fatty acids. Remarkably, let-767 completely rescued the yeast 3-ketoacyl-CoA reductase mutant (ybr159Δ). Because worm ceramides exclusively contain a monomethyl branched chain sphingoid base, we also investigated ceramides in let-767 (RNAi). Indeed, the amount of ceramides was greatly reduced, and unusual sphingoid bases were observed. Taken together, we conclude that LET-767 is a major 3-ketoacyl-CoA reductase in C. elegans required for the bulk production of monomethyl branched and long chain fatty acids, and the developmental arrest in let-767 (RNAi) worms is caused by the deficiency of the former.


Cell | 2012

Constitutive Formation of Caveolae in a Bacterium

Piers J. Walser; Nicholas Ariotti; Mark T. Howes; Charles Ferguson; Richard I. Webb; Dominik Schwudke; Natalya Leneva; Kwang Jin Cho; Leanne Cooper; James Rae; Matthias Floetenmeyer; Viola Oorschot; Ulf Skoglund; Kai Simons; John F. Hancock; Robert G. Parton

Caveolin plays an essential role in the formation of characteristic surface pits, caveolae, which cover the surface of many animal cells. The fundamental principles of caveola formation are only slowly emerging. Here we show that caveolin expression in a prokaryotic host lacking any intracellular membrane system drives the formation of cytoplasmic vesicles containing polymeric caveolin. Vesicle formation is induced by expression of wild-type caveolins, but not caveolin mutants defective in caveola formation in mammalian systems. In addition, cryoelectron tomography shows that the induced membrane domains are equivalent in size and caveolin density to native caveolae and reveals a possible polyhedral arrangement of caveolin oligomers. The caveolin-induced vesicles or heterologous caveolae (h-caveolae) form by budding in from the cytoplasmic membrane, generating a membrane domain with distinct lipid composition. Periplasmic solutes are encapsulated in the budding h-caveola, and purified h-caveolae can be tailored to be targeted to specific cells of interest.

Collaboration


Dive into the Dominik Schwudke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Buko Lindner

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan R. Bornstein

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Eckhard Strauch

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge