Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominik Summer is active.

Publication


Featured researches published by Dominik Summer.


Molecular Pharmaceutics | 2015

Novel Bifunctional Cyclic Chelator for (89)Zr Labeling-Radiolabeling and Targeting Properties of RGD Conjugates.

Chuangyan Zhai; Dominik Summer; Christine Rangger; Gerben M. Franssen; Peter Laverman; Hubertus Haas; Milos Petrik; Roland Haubner; Clemens Decristoforo

Within the last years 89Zr has attracted considerable attention as long-lived radionuclide for positron emission tomography (PET) applications. So far desferrioxamine B (DFO) has been mainly used as bifunctional chelating system. Fusarinine C (FSC), having complexing properties comparable to DFO, was expected to be an alternative with potentially higher stability due to its cyclic structure. In this study, as proof of principle, various FSC-RGD conjugates targeting αvß3 integrins were synthesized using different conjugation strategies and labeled with 89Zr. In vitro stability, biodistribution, and microPET/CT imaging were evaluated using [89Zr]FSC-RGD conjugates or [89Zr]triacetylfusarinine C (TAFC). Quantitative 89Zr labeling was achieved within 90 min at room temperature. The distribution coefficients of the different radioligands indicate hydrophilic character. Compared to [89Zr]DFO, [89Zr]FSC derivatives showed excellent in vitro stability and resistance against transchelation in phosphate buffered saline (PBS), ethylenediaminetetraacetic acid solution (EDTA), and human serum for up to 7 days. Cell binding studies and biodistribution as well as microPET/CT imaging experiments showed efficient receptor-specific targeting of [89Zr]FSC-RGD conjugates. No bone uptake was observed analyzing PET images indicating high in vivo stability. These findings indicate that FSC is a highly promising chelator for the development of 89Zr-based PET imaging agents.


Journal of Labelled Compounds and Radiopharmaceuticals | 2015

Fusarinine C, a novel siderophore-based bifunctional chelator for radiolabeling with Gallium-68

Chuangyan Zhai; Dominik Summer; Christine Rangger; Hubertus Haas; Roland Haubner; Clemens Decristoforo

Fusarinine C (FSC), a siderophore‐based chelator coupled with the model peptide c(RGDfK) (FSC(succ‐RGD)3), revealed excellent targeting properties in vivo using positron emission tomography (PET). Here, we report the details of radiolabeling conditions and specific activity as well as selectivity for 68Ga. 68Ga labeling of FSC(succ‐RGD)3 was optimized regarding peptide concentration, pH, temperature, reaction time, and buffer system. Specific activity (SA) of [68Ga]FSC(succ‐RGD)3 was compared with 68Ga‐1,4,7‐triazacyclononane, 1‐glutaric acid‐4,7 acetic acid RGD ([68Ga]NODAGA‐RGD). Stability was evaluated in 1000‐fold ethylenediaminetetraacetic acid (EDTA) solution (pH 7) and phosphate‐buffered saline (PBS). Metal competition tests (Fe, Cu, Zn, Al, and Ni) were carried out using [68Ga]‐triacetylfusarinine C. High radiochemical yield was achieved within 5 min at room temperature, in particular allowing labeling with 68Ga up to pH 8 with excellent stability in 1000‐fold EDTA solution and PBS. The 10‐fold to 20‐fold lower concentrations of FSC(succ‐RGD)3 led to the same radiochemical yield compared with [68Ga]NODAGA‐RGD with SA up to 1.8 TBq/µmol. Metal competition tests showed high selective binding of 68Ga to FSC. FSC is a multivalent siderophore‐based bifunctional chelator allowing fast and highly selective labeling with 68Ga in a wide pH range and results in stable complexes with high SA. Thus it is exceptionally well suited for the development of new 68Ga‐tracers for in vivo molecular imaging with PET.


Molecular Pharmaceutics | 2018

Cyclic versus Noncyclic Chelating Scaffold for Zr-89-Labeled ZEGFR:2377 Affibody Bioconjugates Targeting Epidermal Growth Factor Receptor Overexpression

Dominik Summer; Javad Garousi; Maryam Oroujeni; Bogdan Mitran; Ken G. Andersson; Anzhelika Vorobyeva; John Löfblom; Anna Orlova; Vladimir Tolmachev; Clemens Decristoforo

Zirconium-89 is an emerging radionuclide for positron emission tomography (PET) especially for biomolecules with slow pharmacokinetics as due to its longer half-life, in comparison to fluorine-18 and gallium-68, imaging at late time points is feasible. Desferrioxamine B (DFO), a linear bifunctional chelator (BFC) is mostly used for this radionuclide so far but shows limitations regarding stability. Our group recently reported on fusarinine C (FSC) with similar zirconium-89 complexing properties but potentially higher stability related to its cyclic structure. This study was designed to compare FSC and DFO head-to-head as bifunctional chelators for 89Zr-radiolabeled EGFR-targeting ZEGFR:2377 affibody bioconjugates. FSC-ZEGFR:2377 and DFO-ZEGFR:2377 were evaluated regarding radiolabeling, in vitro stability, specificity, cell uptake, receptor affinity, biodistribution, and microPET-CT imaging. Both conjugates were efficiently labeled with zirconium-89 at room temperature but radiochemical yields increased substantially at elevated temperature, 85 °C. Both 89Zr-FSC-ZEGFR:2377 and 89Zr-DFO-ZEGFR:2377 revealed remarkable specificity, affinity and slow cell-line dependent internalization. Radiolabeling at 85 °C showed comparable results in A431 tumor xenografted mice with minor differences regarding blood clearance, tumor and liver uptake. In comparison 89Zr-DFO-ZEGFR:2377, radiolabeled at room temperature, showed a significant difference regarding tumor-to-organ ratios. MicroPET-CT imaging studies of 89Zr-FSC-ZEGFR:2377 as well as 89Zr-DFO-ZEGFR:2377 confirmed these findings. In summary we were able to show that FSC is a suitable alternative to DFO for radiolabeling of biomolecules with zirconium-89. Furthermore, our findings indicate that 89Zr-radiolabeling of DFO conjugates at higher temperature reduces off-chelate binding leading to significantly improved tumor-to-organ ratios and therefore enhancing image contrast.


Bioconjugate Chemistry | 2017

Developing Targeted Hybrid Imaging Probes by Chelator Scaffolding

Dominik Summer; Leo Grossrubatscher; Milos Petrik; Tereza Michalcikova; Zbynek Novy; Christine Rangger; Maximilian Klingler; Hubertus Haas; Piriya Kaeopookum; Elisabeth von Guggenberg; Roland Haubner; Clemens Decristoforo

Positron emission tomography (PET) as well as optical imaging (OI) with peptide receptor targeting probes have proven their value for oncological applications but also show restrictions depending on the clinical field of interest. Therefore, the combination of both methods, particularly in a single molecule, could improve versatility in clinical routine. This proof of principle study aims to show that a chelator, Fusarinine C (FSC), can be utilized as scaffold for novel dimeric dual-modality imaging agents. Two targeting vectors (a minigastrin analogue (MG11) targeting cholecystokinin-2 receptor overexpression (CCK2R) or integrin αVβ3 targeting cyclic pentapeptides (RGD)) and a near-infrared fluorophore (Sulfo-Cyanine7) were conjugated to FSC. The probes were efficiently labeled with gallium-68 and in vitro experiments including determination of logD, stability, protein binding, cell binding, internalization, and biodistribution studies as well as in vivo micro-PET/CT and optical imaging in U-87MG αVβ3- and A431-CCK2R expressing tumor xenografted mice were carried out. Novel bioconjugates showed high receptor affinity and highly specific targeting properties at both receptors. Ex vivo biodistribution and micro-PET/CT imaging studies revealed specific tumor uptake accompanied by slow blood clearance and retention in nontargeted tissues (spleen, liver, and kidneys) leading to visualization of tumors at early (30 to 120 min p.i.). Excellent contrast in corresponding optical imaging studies was achieved especially at delayed time points (24 to 72 h p.i.). Our findings show the proof of principle of chelator scaffolding for hybrid imaging agents and demonstrate FSC being a suitable bifunctional chelator for this approach. Improvements to fine-tune pharmacokinetics are needed to translate this into a clinical setting.


Contrast Media & Molecular Imaging | 2018

Exploiting the Concept of Multivalency with 68Ga- and 89Zr-Labelled Fusarinine C-Minigastrin Bioconjugates for Targeting CCK2R Expression

Dominik Summer; Christine Rangger; Maximilian Klingler; Peter Laverman; Gerben M. Franssen; Beatrix E. Lechner; Thomas Orasch; Hubertus Haas; Elisabeth von Guggenberg; Clemens Decristoforo

Cholecystokinin-2 receptors (CCK2R) are overexpressed in a variety of malignant diseases and therefore have gained certain attention for peptide receptor radionuclide imaging. Among extensive approaches to improve pharmacokinetics and metabolic stability of minigastrin (MG) based radioligands, the concept of multivalency for enhanced tumour targeting has not been investigated extensively. We therefore utilized fusarinine C (FSC) as chelating scaffold for novel mono-, di-, and trimeric bioconjugates for targeting CCK2R expression. FSC-based imaging probes were radiolabelled with positron emitting radionuclides (gallium-68 and zirconium-89) and characterized in vitro (log⁡D, IC50, and cell uptake) and in vivo (metabolic stability in BALB/c mice, biodistribution profile, and microPET/CT imaging in A431-CCK2R/A431-mock tumour xenografted BALB/c nude mice). Improved targeting did not fully correlate with the grade of multimerization. The divalent probe showed higher receptor affinity and increased CCK2R mediated cell uptake while the trimer remained comparable to the monomer. In vivo biodistribution studies 1 h after administration of the 68Ga-labelled radioligands confirmed this trend, but imaging at late time point (24 h) with 89Zr-labelled counterparts showed a clearly enhanced imaging contrast of the trimeric probe compared to the mono- and dimer. Furthermore, in vivo stability studies showed a higher metabolic stability for multimeric probes compared to the monomeric bioconjugate. In summary, we could show that FSC can be utilized as suitable scaffold for novel mono- and multivalent imaging probes for CCK2R-related malignancies with partly improved targeting properties for multivalent conjugates. The increased tumour accumulation of the trimer 24 h postinjection (p.i.) can be explained by slower clearance and increased metabolic stability of multimeric conjugates.


Cancer Biotherapy and Radiopharmaceuticals | 2016

Targeting Gastrointestinal Stromal Tumor with 68Ga-Labeled Peptides: An In Vitro Study on Gastrointestinal Stromal Tumor-Cell Lines

Achim Paulmichl; Dominik Summer; Claudia Manzl; Christine Rangger; Francesca Orlandi; Sabrina Niedermoser; Takahiro Taguchi; Björn Wängler; Clemens Decristoforo

The gastrointestinal stromal tumor (GIST) is a rare disease with limited therapeutic options when resistance to tyrosine kinase inhibitor (TKI) treatment occurs. The authors investigated binding of various 68Ga-labeled peptides, targeting receptors reported to be overexpressed in GIST, in different cell lines. For this purpose, three GIST cell lines were tested: GIST-T1, GIST882 (Imatinib sensitive), and GIST430 (Imatinib resistant). DOTA-NT 8-13 (targeting NTR1), DOTA-TATE (targeting SSTR2), CP04 (a minigastrin derivative targeting CCK2-R), VIP-DOTA (targeting VPAC2-R), and 2 DOTA-bombesin derivatives [targeting gastrin releasing peptide receptors (GRPR)] were radiolabeled with 68Ga and incubated with the respective tumor cell and control cell lines. Membrane-bound and internalized activity was measured. Very low or no specific binding to GIST cells was found for all 68Ga-labeled DOTA peptides except for bombesin derivatives indicating no or very low expression of respective receptors. Related to GRPR a pronounced specific binding to all GIST cell lines with no preference related to TKI resistance status was found, both for an agonist (AMBA) with high internalization and for an antagonist (NeoBOMB1) with mainly membrane-bound activity (with up to >80% bound/mg protein). GRPR expression was confirmed by immunohistochemistry. The results show that radiolabeled bombesin analogues, especially antagonists are very promising candidates for targeting GIST.


Theranostics | 2018

Site-specific stabilization of minigastrin analogs against enzymatic degradation for enhanced cholecystokinin-2 receptor targeting

Maximilian Klingler; Clemens Decristoforo; Christine Rangger; Dominik Summer; Julie Foster; Jane K. Sosabowski; Elisabeth von Guggenberg

Minigastrin (MG) analogs show high affinity to the cholecystokinin-2 receptor (CCK2R) and have therefore been intensively studied to find a suitable analog for imaging and treatment of CCK2R-expressing tumors. The clinical translation of the radioligands developed thus far has been hampered by high kidney uptake or low enzymatic stability. In this study, we aimed to develop new MG analogs with improved targeting properties stabilized against degradation through site-specific amino acid modifications. Method: Based on the lead structure of a truncated MG analog, four new MG derivatives with substitutions in the C-terminal part of the peptide (Trp-Met-Asp-Phe-NH2) were synthesized and derivatized with DOTA at the N-terminus for radiolabeling with trivalent radiometals. The in vitro properties of the new analogs were characterized by analyzing the lipophilicity, the protein binding, and the stability of the Indium-111 (111In)-labeled analogs in different media. Two different cell lines, AR42J cells physiologically expressing the rat CCK2R and A431 cells transfected with human CCK2R (A431-CCK2R), were used to study the receptor affinity and cell uptake. For the two most promising MG analogs, metabolic studies in normal BALB/c mice were carried out as well as biodistribution and imaging studies in tumor xenografted athymic BALB/c nude mice. Results: Two out of four synthesized peptide analogs (DOTA-MGS1 and DOTA-MGS4) showed retained receptor affinity and cell uptake when radiolabeled with 111In. These two peptide analogs, however, showed a different stability against enzymatic degradation in vitro and in vivo. When injected to normal BALB/c mice, for 111In-DOTA-MGS1 at 10 min post injection (p.i.) no intact radiopeptide was found in the blood, whereas for 111In-DOTA-MGS4 more than 75% was still intact. 111In-DOTA-MGS4 showed a clear increase in injected activity per gram tissue (IA/g) for A431-CCK2R xenografts (10.40±2.21% IA/g 4 h p.i.) when compared to 111In-DOTA-MGS1 (1.23±0.15% IA/g 4 h p.i.). The tumor uptake of 111In-DOTA-MGS4 was also combined with a low uptake in stomach and kidney leading to high-contrast NanoSPECT/CT images. Conclusion: Of the four new MG analogs developed, the best results in terms of enzymatic stability and increased tumor targeting were obtained with 111In-DOTA-MGS4 showing two substitutions with N-methylated amino acids. 111In-DOTA-MGS4 was also superior to other MG analogs reported thus far and seems therefore an extremely promising targeting molecule for theranostic use with alternative radiometals.


PLOS ONE | 2018

Multimerization results in formation of re-bindable metabolites: A proof of concept study with FSC-based minigastrin imaging probes targeting CCK2R expression

Dominik Summer; Andrea Kroess; Rudolf Woerndle; Christine Rangger; Maximilian Klingler; Hubertus Haas; Leopold Kremser; Herbert Lindner; Elisabeth von Guggenberg; Clemens Decristoforo

Positron emission tomography (PET) with radiolabelled peptide-based tracers has attracted great interest in oncology over the past decades. The success of imaging is closely related to sufficient uptake of the radiotracer in malignant tissue and for this sufficient biological half-life, particularly in the bloodstream, is mandatory. Fast enzymatic degradation during circulation leading to insufficient imaging abilities of peptide-based radioligands remains a major issue. The design of multimeric constructs, bearing multiple targeting moieties, has been widely applied to improve target interaction. This concept may also be applied to prolong the biological half-life of peptide-based radiopharmaceuticals as enzymatic degradation can result in formation of metabolites still capable to interact with the target binding site. In this study we aimed to identify such metabolites and therefore we utilized the siderophore-based bifunctional chelator fusarinine C (FSC) for the design of novel mono- and multimeric constructs, bearing minigastrin (MG) analogues as targeting moieties to address cholecystokinin-2 receptors (CCK2R) which are overexpressed in a variety of cancerous diseases and are well known for fast enzymatic degradation, particularly for truncated des-(Glu)5-MG members, such as MG11. FSC-based imaging probes were radiolabelled with gallium-68 and characterized in vitro (logD, protein binding, affinity and cell-uptake studies, stability and metabolite studies, as well as generation of corresponding metabolites by artificial enzymatic degradation) and in vivo (biodistribution in A431-CCK2R/A431-mock tumour xenografted BALB/c nude mice and stability in blood of living BALB/c mice and analysis of corresponding organ homogenates and urine to identify degradation products). In summary, multimerization was accompanied by partial improvement towards targeting abilities. Identified metabolites formed by artificial enzymatic cleavage of trimeric FSC-MG conjugates in vitro contained intact binding sequences for the receptor. Furthermore, the 68Ga-labelled trimers exhibiting increasing uptake of radioligand in tumour tissue over time and improved in vivo stability in blood samples of living animals of the trimers compared to corresponding mono- and dimers, strongly supporting our hypothesis.


Pharmaceuticals | 2018

Pretargeted Imaging with Gallium-68—Improving the Binding Capability by Increasing the Number of Tetrazine Motifs

Dominik Summer; Sonja Mayr; Milos Petrik; Christine Rangger; Katia Schoeler; Lisa Vieider; Barbara Matuszczak; Clemens Decristoforo

The inverse electron-demand Diels-Alder reaction between 1,2,4,5-tetrazine (Tz) and trans-cyclooct-2-ene (TCO) has gained increasing attraction among extensive studies on click chemistry due to its exceptionally fast reaction kinetics and high selectivity for in vivo pretargeting applications including PET imaging. The facile two-step approach utilizing TCO-modified antibodies as targeting structures has not made it into clinics yet. An increase in the blood volume of humans in comparison to mice seems to be the major limitation. This study aims to show if the design of multimeric Tz-ligands by chelator scaffolding can improve the binding capacity and may lead to enhanced PET imaging with gallium-68. We utilized for this purpose the macrocyclic siderophore Fusarinine C (FSC) which allows conjugation of up to three Tz-residues due to three primary amines available for site specific modification. The resulting mono- di- and trimeric conjugates were radiolabelled with gallium-68 and characterized in vitro (logD, protein binding, stability, binding towards TCO modified rituximab (RTX)) and in vivo (biodistribution- and imaging studies in normal BALB/c mice using a simplified RTX-TCO tumour surrogate). The 68Ga-labelled FSC-based Tz-ligands showed suitable hydrophilicity, high stability and high targeting specificity. The binding capacity to RTX-TCO was increased according to the grade of multimerization. Corresponding in vivo studies showed a multimerization typical profile but generally suitable pharmacokinetics with low accumulation in non-targeted tissue. Imaging studies in RTX-TCO tumour surrogate bearing BALB/c mice confirmed this trend and revealed improved targeting by multimerization as increased accumulation in RTX-TCO positive tissue was observed.


EJNMMI research | 2015

Influence of a novel, versatile bifunctional chelator on theranostic properties of a minigastrin analogue

Joachim Pfister; Dominik Summer; Christine Rangger; Milos Petrik; Elisabeth von Guggenberg; Paolo Minazzi; Giovanni B. Giovenzana; Luigi Aloj; Clemens Decristoforo

Collaboration


Dive into the Dominik Summer's collaboration.

Top Co-Authors

Avatar

Clemens Decristoforo

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Christine Rangger

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Hubertus Haas

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Haubner

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Maximilian Klingler

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Gerben M. Franssen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Peter Laverman

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Chuangyan Zhai

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Peter A. Knetsch

Innsbruck Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge