Dominique Bihan
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dominique Bihan.
Journal of Biological Chemistry | 2008
Antonios D. Konitsiotis; Nicolas Raynal; Dominique Bihan; Erhard Hohenester; Richard W. Farndale; Birgit Leitinger
The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that are activated by native triple-helical collagen. Here we have located three specific DDR2 binding sites by screening the entire triple-helical domain of collagen II, using the Collagen II Toolkit, a set of overlapping triple-helical peptides. The peptide sequence that bound DDR2 with highest affinity interestingly contained the sequence for the high affinity binding site for von Willebrand factor in collagen III. Focusing on this sequence, we used a set of truncated and alanine-substituted peptides to characterize the sequence GVMGFO (O is hydroxyproline) as the minimal collagen sequence required for DDR2 binding. Based on a recent NMR analysis of the DDR2 collagen binding domain, we generated a model of the DDR2-collagen interaction that explains why a triple-helical conformation is required for binding. Triple-helical peptides comprising the DDR2 binding motif not only inhibited DDR2 binding to collagen II but also activated DDR2 transmembrane signaling. Thus, DDR2 activation may be effected by single triple-helices rather than fibrillar collagen.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Szymon W. Manka; Federico Carafoli; Robert Visse; Dominique Bihan; Nicolas Raynal; Richard W. Farndale; Gillian Murphy; Jan J. Enghild; Erhard Hohenester; Hideaki Nagase
Collagenases of the matrix metalloproteinase (MMP) family play major roles in morphogenesis, tissue repair, and human diseases, but how they recognize and cleave the collagen triple helix is not fully understood. Here, we report temperature-dependent binding of a catalytically inactive MMP-1 mutant (E200A) to collagen through the cooperative action of its catalytic and hemopexin domains. Contact between the two molecules was mapped by screening the Collagen Toolkit peptide library and by hydrogen/deuterium exchange. The crystal structure of MMP-1(E200A) bound to a triple-helical collagen peptide revealed extensive interactions of the 115-Å–long triple helix with both MMP-1 domains. An exosite in the hemopexin domain, which binds the leucine 10 residues C-terminal to the scissile bond, is critical for collagenolysis and represents a unique target for inhibitor development. The scissile bond is not correctly positioned for hydrolysis in the crystallized complex. A productive binding mode is readily modeled, without altering the MMP-1 structure or the exosite interactions, by axial rotation of the collagen homotrimer. Interdomain flexing of the enzyme and a localized excursion of the collagen chain closest to the active site, facilitated by thermal loosening of the substrate, may lead to the first transition state of collagenolysis.
Journal of Clinical Investigation | 2011
Alexander D. Barrow; Nicolas Raynal; Thomas Levin Andersen; David A. Slatter; Dominique Bihan; Nicholas Pugh; Marina Cella; Tae Soo Kim; Jaerang Rho; Takako Negishi-Koga; Jean-Marie Delaissé; Hiroshi Takayanagi; Joseph A. Lorenzo; Marco Colonna; Richard W. Farndale; Yongwon Choi; John Trowsdale
Osteoclasts are terminally differentiated leukocytes that erode the mineralized bone matrix. Osteoclastogenesis requires costimulatory receptor signaling through adaptors containing immunoreceptor tyrosine-based activation motifs (ITAMs), such as Fc receptor common γ (FcRγ) and DNAX-activating protein of 12 kDa. Identification of these ITAM-containing receptors and their ligands remains a high research priority, since the stimuli for osteoclastogenesis are only partly defined. Osteoclast-associated receptor (OSCAR) was proposed to be a potent FcRγ-associated costimulatory receptor expressed by preosteoclasts in vitro, but OSCAR lacks a cognate ligand and its role in vivo has been unclear. Using samples from mice and patients deficient in various ITAM signaling pathways, we show here that OSCAR costimulates one of the major FcRγ-associated pathways required for osteoclastogenesis in vivo. Furthermore, we found that OSCAR binds to specific motifs within fibrillar collagens in the ECM that become revealed on nonquiescent bone surfaces in which osteoclasts undergo maturation and terminal differentiation in vivo. OSCAR promoted osteoclastogenesis in vivo, and OSCAR binding to its collagen motif led to signaling that increased numbers of osteoclasts in culture. Thus, our results suggest that ITAM-containing receptors can respond to exposed ligands in collagen, leading to the functional differentiation of leukocytes, which provides what we believe to be a new concept for ITAM regulation of cytokine receptors in different tissue microenvironments.
Structure | 2009
Federico Carafoli; Dominique Bihan; Stavros Stathopoulos; Antonios D. Konitsiotis; Marc Kvansakul; Richard W. Farndale; Birgit Leitinger; Erhard Hohenester
Summary The discoidin domain receptors, DDR1 and DDR2, are widely expressed receptor tyrosine kinases that are activated by triple-helical collagen. They control important aspects of cell behavior and are dysregulated in several human diseases. The major DDR2-binding site in collagens I–III is a GVMGFO motif (O is hydroxyproline) that also binds the matricellular protein SPARC. We have determined the crystal structure of the discoidin domain of human DDR2 bound to a triple-helical collagen peptide. The GVMGFO motifs of two collagen chains are recognized by an amphiphilic pocket delimited by a functionally critical tryptophan residue and a buried salt bridge. Collagen binding results in structural changes of DDR2 surface loops that may be linked to the process of receptor activation. A comparison of the GVMGFO-binding sites of DDR2 and SPARC reveals a striking case of convergent evolution in collagen recognition.
PLOS ONE | 2012
Huifang Xu; Dominique Bihan; Francis Chang; Paul H. Huang; Richard W. Farndale; Birgit Leitinger
The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that bind to and are activated by collagens. Similar to collagen-binding β1 integrins, the DDRs bind to specific motifs within the collagen triple helix. However, these two types of collagen receptors recognize distinct collagen sequences. While GVMGFO (O is hydroxyproline) functions as a major DDR binding motif in fibrillar collagens, integrins bind to sequences containing Gxx’GEx”. The DDRs are thought to regulate cell adhesion, but their roles have hitherto only been studied indirectly. In this study we used synthetic triple-helical collagen-derived peptides that incorporate either the DDR-selective GVMGFO motif or integrin-selective motifs, such as GxOGER and GLOGEN, in order to selectively target either type of receptor and resolve their contributions to cell adhesion. Our data using HEK293 cells show that while cell adhesion to collagen I was completely inhibited by anti-integrin blocking antibodies, the DDRs could mediate cell attachment to the GVMGFO motif in an integrin-independent manner. Cell binding to GVMGFO was independent of DDR receptor signalling and occurred with limited cell spreading, indicating that the DDRs do not mediate firm adhesion. However, blocking the interaction of DDR-expressing cells with collagen I via the GVMGFO site diminished cell adhesion, suggesting that the DDRs positively modulate integrin-mediated cell adhesion. Indeed, overexpression of the DDRs or activation of the DDRs by the GVMGFO ligand promoted α1β1 and α2β1 integrin-mediated cell adhesion to medium- and low-affinity integrin ligands without regulating the cell surface expression levels of α1β1 or α2β1. Our data thus demonstrate an adhesion-promoting role of the DDRs, whereby overexpression and/or activation of the DDRs leads to enhanced integrin-mediated cell adhesion as a result of higher integrin activation state.
Journal of Biological Chemistry | 2012
Stephanie M. Jung; Masaaki Moroi; Kenji Soejima; Tomohiro Nakagaki; Yoshiki Miura; Michael C. Berndt; Elizabeth E. Gardiner; Joanna Marie Howes; Nicholas Pugh; Dominique Bihan; Steve P. Watson; Richard W. Farndale
Background: Platelet collagen receptor GPVI likely functions as a dimer rather than a monomer. Results: Preformed GPVI dimers, but not monomers, in resting platelets bind specific collagen sequences and are essential for platelet adhesion and activation. Conclusion: Constitutive GPVI dimers on resting platelets support platelet adhesion to collagen and activation. Significance: Resting platelets bind collagen through GPVI dimers, allowing immediate initiation of thrombus formation. The platelet collagen receptor glycoprotein VI (GPVI) has been suggested to function as a dimer, with increased affinity for collagen. Dissociation constants (Kd) obtained by measuring recombinant GPVI binding to collagenous substrates showed that GPVI dimers bind with high affinity to tandem GPO (Gly-Pro-Hyp) sequences in collagen, whereas the markedly lower affinity of the monomer for all substrates implies that it is not the collagen-binding form of GPVI. Dimer binding required a high density of immobilized triple-helical (GPO)10-containing peptide, suggesting that the dimer binds multiple, discrete peptide helices. Differential inhibition of dimer binding by dimer-specific antibodies, m-Fab-F and 204-11 Fab, suggests that m-Fab-F binds at the collagen-binding site of the dimer, and 204-11 Fab binds to a discrete site. Flow cytometric quantitation indicated that GPVI dimers account for ∼29% of total GPVI in resting platelets, whereas activation by either collagen-related peptide or thrombin increases the number of dimers to ∼39 and ∼44%, respectively. m-Fab-F inhibits both GPVI-dependent static platelet adhesion to collagen and thrombus formation on collagen under low and high shear, indicating that pre-existing dimeric GPVI is required for the initial interaction with collagen because affinity of the monomer is too low to support binding and that interaction through the dimer is essential for platelet activation. These GPVI dimers in resting circulating platelets will enable them to bind injury-exposed subendothelial collagen to initiate platelet activation. The GPVI-specific agonist collagen-related peptide or thrombin further increases the number of dimers, thereby providing a feedback mechanism for reinforcing binding to collagen and platelet activation.
Matrix Biology | 2009
Robert Jan Lebbink; Nicolas Raynal; Talitha de Ruiter; Dominique Bihan; Richard W. Farndale; Linde Meyaard
Immune responses are tightly controlled by the opposing actions of activating and inhibitory immune receptors. Previously we identified collagens as ligands for the inhibitory leukocyte-associated Ig-like receptor-1 (LAIR-1), revealing a novel mechanism of peripheral immune regulation by inhibitory immune receptors binding to extracellular matrix collagens. This interaction can be blocked by LAIR-2, a secreted member of the LAIR-1 family. LAIR-1 specifically interacts with synthetic trimeric peptides containing 10 repeats of glycine-proline-hydroxyproline (GPO) residues which can directly inhibit immune cell activation in vitro. Here we studied the interaction of human LAIR-1 and LAIR-2 with collagen in more detail by using novel overlapping synthetic trimeric peptides (Toolkits) encompassing the entire triple-helical domain of human collagens II and III. LAIR-1 and LAIR-2 bind several of these collagen-like peptides, with LAIR-2 being able to bind more than LAIR-1. LAIR binding to trimeric collagen peptides was influenced by GPO content of the peptide, although additional non-GPO triplets contributed to the interaction. Furthermore, we identified several trimeric peptides that were potent LAIR-1 ligands and could efficiently induce inhibition of T cell activation and FceRI-induced degranulation of RBL-2H3 cells through binding to LAIR-1. A detailed understanding of the LAIR recognition motifs within collagen may lead to the development of potent reagents that can be used in in vitro, ex vivo, and in vivo functional studies to dissect the biology and function of the collagen/LAIR-1 interaction.
Science | 2014
W. Ying Chow; Rakesh Rajan; Karin H. Müller; David G. Reid; Jeremy N. Skepper; Wai Ching Wong; Roger A. Brooks; Maggie Green; Dominique Bihan; Richard W. Farndale; David A. Slatter; Catherine M. Shanahan; Melinda J. Duer
Fundamentals of Bone Formation In vitro models can help guide research for tissue engineering or drug delivery, but the extent to which results from in vitro experiments may mimic in vivo ones will depend on the robustness of the model. For complex tissues like the extracellular matrix or bone, this means matching the chemical organization of the tissue at both the atomic scale and the structural level. Chow et al. (p. 742) used nuclear magnetic resonance (NMR) spectroscopy to analyze a sample on both these length scales. First an isotope-enriched mouse was produced to enhance the NMR signal. Samples from these mice were then used to study the extracellular matrix of developing bone and the calcification front during fetal bone growth. An in vitro model of developing bone from a mouse model is amenable to nuclear magnetic resonance analysis. Nuclear magnetic resonance (NMR) spectroscopy is useful to determine molecular structure in tissues grown in vitro only if their fidelity, relative to native tissue, can be established. Here, we use multidimensional NMR spectra of animal and in vitro model tissues as fingerprints of their respective molecular structures, allowing us to compare the intact tissues at atomic length scales. To obtain spectra from animal tissues, we developed a heavy mouse enriched by about 20% in the NMR-active isotopes carbon-13 and nitrogen-15. The resulting spectra allowed us to refine an in vitro model of developing bone and to probe its detailed structure. The identification of an unexpected molecule, poly(adenosine diphosphate ribose), that may be implicated in calcification of the bone matrix, illustrates the analytical power of this approach.
Journal of Biological Chemistry | 2012
Samir W. Hamaia; Nicholas Pugh; Nicolas Raynal; Benjamin Némoz; Rachael Stone; Donald Gullberg; Dominique Bihan; Richard W. Farndale
Background: The collagens contain GxOGEx″ integrin-binding motifs, whose identity and specificity are poorly defined. Results: GLOGEN in collagen III is a high affinity ligand, and GVOGEA in collagen II is a specific ligand for α1β1. Conclusion: Collagen Toolkits enable such sites to be identified and compared. Significance: GLOGEN- and GVOGEA-containing peptides can be used to characterize the properties of α1β1. Integrins are well characterized cell surface receptors for extracellular matrix proteins. Mapping integrin-binding sites within the fibrillar collagens identified GFOGER as a high affinity site recognized by α2β1, but with lower affinity for α1β1. Here, to identify specific ligands for α1β1, we examined binding of the recombinant human α1 I domain, the rat pheochromocytoma cell line (PC12), and the rat glioma Rugli cell line to our collagen Toolkit II and III peptides using solid-phase and real-time label-free adhesion assays. We observed Mg2+-dependent binding of the α1 I domain to the peptides in the following rank order: III-7 (GLOGEN), II-28 (GFOGER), II-7 and II-8 (GLOGER), II-18 (GAOGER), III-4 (GROGER). PC12 cells showed a similar profile. Using antibody blockade, we confirmed that binding of PC12 cells to peptide III-7 was mediated by integrin α1β1. We also identified a new α1β1-binding activity within peptide II-27. The sequence GVOGEA bound weakly to PC12 cells and strongly to activated Rugli cells or to an activated α1 I domain, but not to the α2 I domain or to C2C12 cells expressing α2β1 or α11β1. Thus, GVOGEA is specific for α1β1. Although recognized by both α2β1 and α11β1, GLOGEN is a better ligand for α1β1 compared with GFOGER. Finally, using biosensor assays, we show that although GLOGEN is able to compete for the α1 I domain from collagen IV (IC50 ∼3 μm), GFOGER is much less potent (IC50 ∼90 μm), as shown previously. These data confirm the selectivity of GFOGER for α2β1 and establish GLOGEN as a high affinity site for α1β1.
Infection and Immunity | 2010
Jack C. Leo; Heli Elovaara; Dominique Bihan; Nicholas Pugh; Sami K. Kilpinen; Nicolas Raynal; Mikael Skurnik; Richard W. Farndale; Adrian Goldman
ABSTRACT The Yersinia adhesin YadA mediates the adhesion of the human enteropathogen Yersinia enterocolitica to collagens and other components of the extracellular matrix. Though YadA has been proposed to bind to a specific site in collagens, the exact binding determinants for YadA in native collagen have not previously been elucidated. We investigated the binding of YadA to collagen Toolkits, which are libraries of triple-helical peptides spanning the sequences of type II and III human collagens. YadA bound to many of them, in particular to peptides rich in hydroxyproline but with few charged residues. We were able to block the binding of YadA to collagen type IV with the triple-helical peptide (Pro-Hyp-Gly)10, suggesting that the same site in YadA binds to triple-helical regions in network-forming collagens as well. We showed that a single Gly-Pro-Hyp triplet in a triple-helical peptide was sufficient to support YadA binding, but more than six triplets were required to form a tight YadA binding site. This is significantly longer than the case for eukaryotic collagen-binding proteins. YadA-expressing bacteria bound promiscuously to Toolkit peptides. Promiscuous binding could be advantageous for pathogenicity in Y. enterocolitica and, indeed, for other pathogenic bacteria. Many of the tightly binding peptides are also targets for eukaryotic collagen-binding proteins, and YadA was able to inhibit the interaction between selected Toolkit peptides and platelets. This leads to the intriguing possibility that YadA may interfere in vivo with host processes mediated by endogenous collagen-binding proteins.