Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominique Ledoux is active.

Publication


Featured researches published by Dominique Ledoux.


Biochemical and Biophysical Research Communications | 2002

FGF-2 and TPA induce matrix metalloproteinase-9 secretion in MCF-7 cells through PKC activation of the Ras/ERK pathway.

Jianfeng Liu; Michel Crépin; Jian-Miao Liu; Denis Barritault; Dominique Ledoux

Matrix metalloproteinases (MMPs) play an important role in cancer metastasis. Here, we investigated the effect of fibroblast growth factor-2 (FGF-2) and 12-O-tetradecanoylphorbol-13-acetate (TPA) on the secretion of type IV collagenases (MMP-2, MMP-9) in breast cancer MCF-7 cells. As shown by gelatin zymography, both FGF-2 and TPA stimulated the secretion of MMP-9 in MCF-7 cells while they did not change the level of MMP-2 secretion. Signaling cascade studies indicated that both FGF-2 and TPA induced Ras activation, c-Raf phosphorylation, mitogen-activated protein kinase/ERK kinase (MEK(1/2)) phosphorylation, and extracellular signal-regulated kinase (ERK(1/2)) phosphorylation. The FGF-2- and TPA-induced MMP-9 secretion was significantly inhibited by transient transfection of MCF-7 cells with dominant negative Ras (Ras-N17) and by treatment with MEK(1/2) inhibitor PD98059. A pan-protein kinase C (PKC) inhibitor, GF109203X, was found to totally abolish the FGF-2- and TPA-induced MMP-9 secretion and ERK(1/2) phosphorylation. Use of isoform-specific PKC inhibitors such as Rotllerin and Gö6976 suggested, moreover, that the PKC-delta isoform is a likely component of FGF-2 and TPA trophic signaling. These results demonstrated that FGF-2 and TPA induce MMP-9 secretion in MCF-7 cells mainly through PKC-dependent activation of the Ras/ERK(1/2) signaling pathway.


Progress in Growth Factor Research | 1992

Interactions of FGFs with target cells

Dominique Ledoux; Leila Gannoun-Zaki; Denis Barritault

Growth factors play a key role in cellular communication, a necessary step for the development of pluricellular organisms. The fibroblast growth factors (FGF) are among these polypeptides and have seven known members: FGF 1 to FGF 7 which are also known as acidic FGF, basic FGF, translation products of oncogenes hst, int 2, FGF 5, FGF 6 and FGF 7 or keratinocyte growth factor (KGF) respectively [1]. The best known and the most abundant in normal adult tissues are acidic and basic FGFs, or FGF 1 and 2 respectively, which have been subjected to extensive studies both in vitro and in vivo. These two factors have almost ubiquitous distribution and a wide spectrum of biological activity including action on cellular proliferation and differentiation, as well as neurotrophic and angiogenic properties [1]. These different activities are induced by triggering specific receptors present at the surface of the target cell. Following this interaction, the FGF-receptor complexes are internalized and activate intracellular pathways. An important effort of investigations has been produced to characterize these receptors and intracellular pathways. It is the purpose of this review to present this work which will focus on FGFs 1 and 2. The existence of two classes of interactions has been reported as early as 1987 [52, 53, 54] suggesting the presence of high and low affinity receptors for FGFs.


Cancer Research | 2009

Down-regulation of CXCR4 and CD62L in Chronic Lymphocytic Leukemia Cells Is Triggered by B-Cell Receptor Ligation and Associated with Progressive Disease

Amalia Vlad; Pierre-Antoine Deglesne; Remi Letestu; Stéphane Saint-Georges; Nathalie Chevallier; Fanny Baran-Marszak; Nadine Varin-Blank; Florence Ajchenbaum-Cymbalista; Dominique Ledoux

Progressive cases of B-cell chronic lymphocytic leukemia (CLL) are frequently associated with lymphadenopathy, highlighting a critical role for signals emanating from the tumor environment in the accumulation of malignant B cells. We investigated on CLL cells from 30 untreated patients the consequence of B-cell receptor (BCR) triggering on the membrane expression of CXCR4 and CD62L, two surface molecules involved in trafficking and exit of B-lymphocytes from lymph nodes. BCR stimulation promoted a strictly simultaneous down-regulation of CXCR4 and CD62L membrane expression to a variable extent. The variable BCR-dependent decrease of the two proteins was strikingly representative of the heterogeneous capacity of the CLL cells to respond to BCR engagement in a given patient. Functionally, cells down-regulating CXCR4 and CD62L in response to BCR engagement displayed a reduction in both migration toward CXCL12 and adhesion to lymphatic endothelial cells. Remarkably, the ability of CLL cells to respond to BCR ligation was correlated with unfavorable prognostic markers and short progression-free survival. In conclusion, BCR signaling promotes decrease of CXCR4 and CD62L membrane expression in progressive cases only. These results are consistent with the hypothesis that BCR-mediated signaling pathways favor accumulation of a proliferative pool within the lymph nodes of progressive CLL cases.


Haematologica | 2010

Constitutive and B-cell receptor-induced activation of STAT3 are important signaling pathways targeted by bortezomib in leukemic mantle cell lymphoma

Fanny Baran-Marszak; Mohand Boukhiar; Stephanie Harel; Christelle Laguillier; Claudine Roger; Remy Gressin; Antoine Martin; Remi Fagard; Nadine Varin-Blank; Florence Ajchenbaum-Cymbalista; Dominique Ledoux

Background The deregulation of several transcription factors contribute to the aggressive course of mantle cell lymphoma. This study focuses on survival signals emanating from the tumor environment and involving the signal transducer and activator of transcription (STAT) 3 through cytokines or antigen recognition. Design and Methods Primary mantle cell lymphoma cells were isolated from 20 leukemic patients. The phosphorylation status of STAT3 was evaluated by immunoblottting and immunofluorescence, the levels of cytokine secretion by enzyme-linked immunosorbent assay and the cell survival signals by apoptosis and cell viability assays. Results STAT3 was constitutively phosphorylated in the Jeko-1 mantle cell lymphoma cell line and in 14 out of 20 (70%) cases of leukemic mantle cell lymphoma as the result of an autocrine secretion of interleukin-6 and/or interleukin-10. In addition, B-cell receptor engagement resulted in an increase of both in vitro cell survival and STAT3 phosphorylation in primary mantle cell lymphoma cells. Inhibition of the Janus-activated kinase/STAT3 pathway increased spontaneous apoptosis and suppressed B-cell receptor-induced cell survival in all cases analyzed. The impact of in vitro exposure to the proteasome inhibitor bortezomib was next evaluated in primary mantle cell lymphoma cells. Bortezomib induced apoptosis and a decrease of both interleukin-6/interleukin-10 secretion and STAT3 phosphorylation. In addition, bortezomib inhibited B-cell receptor-triggered STAT3 phosphorylation and cell survival. Conclusions We demonstrated that STAT3 was activated in primary mantle cell lymphoma cells either constitutively through a cytokine autocrine loop or in response to B-cell receptor engagement, both processes leading to a survival signal inhibited by bortezomib. STAT3 appears, therefore, to play a pivotal role in mantle cell lymphoma and represents a promising therapeutic target.


American Journal of Pathology | 2004

An Engineered Biopolymer Prevents Mucositis Induced by 5-Fluorouracil in Hamsters

Frédéric O. Morvan; Brigitte Baroukh; Dominique Ledoux; Jean-Pierre Caruelle; Denis Barritault; Gaston Godeau; Jean-Louis Saffar

Oral mucositis is a common, treatment-limiting, and costly side effect of cancer treatments whose biological underpinnings remain poorly understood. In this study, mucositis induced in hamsters by 5-fluorouracil (5-FU) was observed after cheek-pouch scarifications, with and without administration of RGTA (RG1503), a polymer engineered to mimic the protective effects of heparan sulfate. RG1503 had no effects on 5-FU-induced decreases in body weight, blood cell counts, or cheek-pouch and jejunum epithelium proliferation rates, suggesting absence of interference with the cytotoxic effects of 5-FU. Extensive mucositis occurred in all of the untreated animals, and consisted of severe damage to cheek pouch tissues (epithelium, underlying connective tissue, and muscle bundles). Only half of the RG1503-treated animals had mucositis, over a mean area 70% smaller than in the untreated animals. Basement membranes were almost completely destroyed in the untreated group but was preserved in the RG1503 group. RG1503 blunted or abolished the following 5-FU-induced effects: increases in matrix metalloproteinase (MMP)-2, MMP-9, and plasmin, and decreases in tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. These data indicate that mucositis lesions are related to massive release of proteolytic enzymes and are improved by RG1503 treatment, this effect being ascribable in part to restoration of the MMP-TIMP balance. RG1503 given with cancer treatment might protect patients from mucositis.


FEBS Letters | 2003

Heparin-like dextran derivatives as well as glycosaminoglycans inhibit the enzymatic activity of human cathepsin G

Dominique Ledoux; Didier Merciris; Denis Barritault; Jean-Pierre Caruelle

Some synthetic dextran derivatives that mimic the action of heparin/heparan sulfate were previously shown to inhibit neutrophil elastase and plasmin. Here we report that these derivatized dextrans also inhibit cathepsin G (CatG). Dextran containing carboxymethyl and benzylamide groups (RG1150) as well as those containing carboxymethyl, sulfate and benzylamide groups (RG1192), were the most efficient inhibitors of CatG activity. RG1192 and RG1150 bind CatG with a K i of 0.11 and 0.17 nM, respectively, while carboxymethylated sulfated dextran (RG1503) as well as heparin, heparan sulfate and dermatan sulfate bind CatG with a 7‐ to 30‐fold lower affinity. Variation of K i with ionic strength indicates that ionic interactions account for 26% of the RG1503–CatG binding energy, while binding of RG1192 or RG1150 to CatG is mainly governed by non‐electrostatic interactions. This, together with the fact that these compounds both protect fibronectin and laminin against CatG‐mediated degradation, suggest that specific dextran derivatives can contribute to the regulation of CatG activity.


Biochemical and Biophysical Research Communications | 1989

Distribution of basic fibroblast growth factor binding sites in various tissue membrane preparations from adult guinea pig.

Dominique Ledoux; Agnes Mereau; Marie Claude Dauchel; Denis Barritault; José Courty

In order to localize a rich source of basic FGF receptor, we examined the distribution of basic FGF binding sites in brain, stomach, lung, spleen, kidney, liver and intestine membrane preparations from adult guinea pig. Comparative binding studies using iodinated basic FGF showed that a specific binding was detected in all the membrane preparations tested. Scatchard plots from iodinated basic FGF competition experiment with native basic FGF in various membrane preparations, suggested the presence of one class of binding sites in some tissues such as liver, kidney, spleen, lung, stomach, and intestine with an apparent dissociation constant (appKD) value ranging from 4 to 7.5 nM and the existence of a second class of higher affinity sites in brain membranes with appKD value of 15 pM. Characterization of these basic FGF high affinity interaction sites was performed using a cross-linking reagent. These results show for the first time that specific interaction sites for basic FGF are widely distributed, suggesting that this growth factor might play a role in the physiological functions of a number of adult organs.


Biochemical and Biophysical Research Communications | 1990

Evidence of high and low affinity binding sites for basic fibroblast growth factor in mouse placenta

Hubert Hondermarck; José Courty; Dominique Ledoux; Vincent Blanckaert; Denis Barritault; Bénoni Boilly

The placenta has been shown to contain bFGF, but the presence of specific binding sites for this growth factor in this tissue remained to be established. In order to study the role of bFGF in the placenta growth, we looked for specific binding sites on mouse placental cell membranes at days 12, 14, 16, and 18 of pregnancy. At day 12, Scatchard analyses indicated that two classes of specific interaction sites for bFGF were detected. One class of high affinity binding sites was characterized by an apparent Kd of 10 pM and a binding capacity of 10 fmoles per mg of membrane protein. A second class of low affinity binding sites was detected with an apparent Kd of 60 nM and a binding capacity of 26 pmoles per mg of membrane protein. At days 14, 16 or 18, Scatchard analyses only showed low affinity binding sites with an apparent Kd of 24 nM and a binding capacity of 230 pmoles per mg of membrane protein. The characterization of these binding sites was performed by cross linking experiments that revealed two forms of specific complexes. This result suggested that the high affinity binding sites correspond to putative receptors with relative molecular masses equal to 65,000 and 85,000. The dramatic decrease of the high affinity receptor number after the 12th day of pregnancy, which is synchronous with the 9-fold increase of the low affinity binding site number, suggests that the biological activity of bFGF could be regulated by a balance between both the numbers of high and low affinity binding sites on placenta cell membranes. Thus, as it was shown for other growth factors, bFGF could only be involved at specific pregnancy stages.


International Journal of Cancer | 2015

Inhibitors of BCR signalling interrupt the survival signal mediated by the micro-environment in mantle cell lymphoma

Sophie Bernard; Damien Danglade; Laura Gardano; Christelle Laguillier; Gregory Lazarian; Claudine Roger; Catherine Thieblemont; Jacek Marzec; John G. Gribben; Florence Cymbalista; Nadine Varin-Blank; Dominique Ledoux; Fanny Baran-Marszak

Several studies provide evidences for mantle cell lymphoma (MCL) cell survival relying on B‐cell receptor (BCR)‐mediated signalling pathways, whereas the nature of this activation is unknown. Significant progress in MCL treatment is achieved through therapies targeting BCR‐associated kinases, i.e., Ibrutinib and Fostamatinib, inhibitors of BTK and SYK, respectively. Our study addresses survival signals emanating from the BCR or the tumour environment and how inhibiting BCR signalling effectors might impact these survival signals. We found that BTK was constitutively activated and that SYK phosphorylation was highly increased and sustained upon BCR activation of primary MCL cells. Moreover, MCL cells from leukaemic patients secreted high amount of IL‐1β, IL‐6, IL‐8 and CCL5. Activation of the BCR induced (i) cell survival, (ii) STAT3 activation and (iii) increased autocrine secretion of IL‐1β, IL‐6, IL‐8, CCL5, IL‐10, TNFα and VEGF. Specific inhibition of BTK by Ibrutinib or SYK by Fostamatinib (R406) reversed these protective effects and decreased both basal and BCR‐induced autocrine cytokine secretions associated with STAT3 phosphorylation. Interestingly, targeting BTK and SYK prevented and inhibited BCR‐induced MCL cell adhesion to human bone marrow stromal cells (HMSCs) in short‐ and long‐term co‐culture. We demonstrated that BCR‐induced survival relies on autocrine secretion of IL‐1β, TNFα and CCL5 that might facilitate adhesion of MCL cells to HMSC. Treatment with Ibrutinib or Fostamatinib blocked the chemotactic signal thus increasing apoptosis.


Journal of Histochemistry and Cytochemistry | 1997

Cellular Distribution of the Angiogenic Factor Heparin Affin Regulatory Peptide (HARP) mRNA and Protein in the Human Mammary Gland

Dominique Ledoux; Danièle Caruelle; Jean-Christophe Sabourin; Jianfeng Liu; Michel Crépin; Denis Barritault; José Courty

The heparin affin regulatory peptide (HARP) growth factor, also known as pleiotrophin, is a developmentally regulated protein that displays biological functions during cell growth and differentiation. To study the physiological role of this protein, we investigated the cellular distribution of HARP mRNA and protein in the resting human mammary gland. In situ hybridization histochemistry revealed that HARP mRNA was localized in alveolar myoepithelial cells, whereas alveolar epithelial cells were negative. In the stroma, HARP mRNA was localized in endothelial cells and smooth muscle cells of blood vessels. Interestingly, HARP protein and mRNA were not always co-localized. HARP protein immunocytochemistry staining was observed in an area including both alveolar myoepithelial and epithelial cells, although epithelial cells do not express HARP transcript. In contrast, the distribution of HARP protein is parallel to that of HARP mRNA in endothelial and vascular smooth muscle cells. In the light of these results, the putative role of HARP in controlling the proliferation and/or differentiation of the different mammary cell types is proposed and discussed.

Collaboration


Dive into the Dominique Ledoux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge