Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominique Raze is active.

Publication


Featured researches published by Dominique Raze.


Nature Methods | 2005

Nanoscale mapping and functional analysis of individual adhesins on living bacteria

Vincent Dupres; Franco D. Menozzi; Camille Locht; Brian H. Clare; Nicholas L. Abbott; Stéphane Cuenot; Coralie Bompard; Dominique Raze; Yves F. Dufrêne

Although much progress has been made in the identification and characterization of adhesins borne by pathogenic bacteria, the molecular details underlying their interaction with host receptors remain largely unknown owing to the lack of appropriate probing techniques. Here we report a method, based on atomic force microscopy (AFM) with tips bearing biologically active molecules, for measuring the specific binding forces of individual adhesins and for mapping their distribution on the surface of living bacteria. First, we determined the adhesion forces between the heparin-binding haemagglutinin adhesin (HBHA) produced by Mycobacterium tuberculosis and heparin, used as a model sulphated glycoconjugate receptor. Both the adhesion frequency and adhesion force increased with contact time, indicating that the HBHA-heparin complex is formed via multiple intermolecular bridges. We then mapped the distribution of single HBHA molecules on the surface of living mycobacteria and found that the adhesin is not randomly distributed over the mycobacterial surface, but concentrated into nanodomains.


PLOS Pathogens | 2006

Live Attenuated B. pertussis as a Single-Dose Nasal Vaccine against Whooping Cough

Nathalie Mielcarek; Anne Sophie Debrie; Dominique Raze; Julie Bertout; Carine Rouanet; Amena Ben Younes; Colette Creusy; Jacquelyn T. Engle; William E. Goldman; Camille Locht

Pertussis is still among the principal causes of death worldwide, and its incidence is increasing even in countries with high vaccine coverage. Although all age groups are susceptible, it is most severe in infants too young to be protected by currently available vaccines. To induce strong protective immunity in neonates, we have developed BPZE1, a live attenuated Bordetella pertussis strain to be given as a single-dose nasal vaccine in early life. BPZE1 was developed by the genetic inactivation or removal of three major toxins. In mice, BPZE1 was highly attenuated, yet able to colonize the respiratory tract and to induce strong protective immunity after a single nasal administration. Protection against B. pertussis was comparable to that induced by two injections of acellular vaccine (aPV) in adult mice, but was significantly better than two administrations of aPV in infant mice. Moreover, BPZE1 protected against Bordetella parapertussis infection, whereas aPV did not. BPZE1 is thus an attractive vaccine candidate to protect against whooping cough by nasal, needle-free administration early in life, possibly at birth.


Journal of Bacteriology | 2000

New Virulence-Activated and Virulence-Repressed Genes Identified by Systematic Gene Inactivation and Generation of Transcriptional Fusions in Bordetella pertussis

Rudy Antoine; Sylvie Alonso; Dominique Raze; Loic Coutte; Sarah Lesjean; Eve Willery; Camille Locht; Françoise Jacob-Dubuisson

An in silico scan of the partially completed genome sequence of Bordetella pertussis and analyses of transcriptional fusions generated with a new integrational vector were used to identify new potential virulence genes. The genes encoding a putative siderophore receptor, adhesins, and an autotransporter protein appeared to be regulated in a manner similar to Bordetella virulence genes by the global virulence regulator BvgAS. In contrast, the gene encoding a putative intimin-like protein appeared to be repressed under conditions of virulence.


Pflügers Archiv: European Journal of Physiology | 2008

Organization of the mycobacterial cell wall: a nanoscale view

David Alsteens; Claire Verbelen; Etienne Dague; Dominique Raze; Alain R. Baulard; Yves F. Dufrêne

The biosynthesis of the Mycobacterium tuberculosis cell wall is targeted by some of the most powerful antituberculous drugs. To date, the molecular mechanisms by which these antibiotics affect the cell wall characteristics are not well understood. Here, we used atomic force microscopy – in three different modes – to probe the nanoscale surface properties of live mycobacteria and their modifications upon incubation with four antimycobacterial drugs: isoniazid, ethionamide, ethambutol, and streptomycine. Topographic imaging, combined with quantitative surface roughness analysis, demonstrated that all drugs induce a substantial increase of surface roughness to an extent that correlates with the localization of the target (i.e., synthesis of mycolic acids, arabinogalactans, or proteins). Chemical force microscopy with hydrophobic tips revealed that the structural alterations induced by isoniazid and ethambutol were correlated with a dramatic decrease of cell surface hydrophobicity, reflecting the removal of the outermost mycolic acid layer. Consistent with this finding, tapping mode imaging, combined with immunogold labeling, showed that the two drugs lead to the massive exposure of hydrophilic lipoarabinomannans at the surface. Taken together, these structural, chemical, and immunological data provide novel insight into the action mode of antimycobacterial drugs, as well as into the spatial organization of the mycobacterial cell wall.


Infection and Immunity | 2001

Role of ADP-ribosyltransferase activity of pertussis toxin in toxin-adhesin redundancy with filamentous hemagglutinin during Bordetella pertussis infection.

Sylvie Alonso; Kevin Pethe; Nathalie Mielcarek; Dominique Raze; Camille Locht

ABSTRACT Pertussis toxin (PT) and filamentous hemagglutinin (FHA) are two major virulence factors of Bordetella pertussis. FHA is the main adhesin, whereas PT is a toxin with an A-B structure, in which the A protomer expresses ADP-ribosyltransferase activity and the B moiety is responsible for binding to the target cells. Here, we show redundancy of FHA and PT during infection. Whereas PT-deficient and FHA-deficient mutants colonized the mouse respiratory tract nearly as efficiently as did the isogenic parent strain, a mutant deficient for both factors colonized substantially less well. This was not due to redundant functions of PT and FHA as adhesins, since in vitro studies of epithelial cells and macrophages indicated that FHA, but not PT, acts as an adhesin. An FHA-deficient B. pertussis strain producing enzymatically inactive PT colonized as poorly as did the FHA-deficient, PT-deficient strain, indicating that the ADP-ribosyltransferase activity of PT is required for redundancy with FHA. Only strains producing active PT induced a local transient release of tumor necrosis factor alpha (TNF-α), suggesting that the pharmacological effects of PT are the basis of the redundancy with FHA, through the release of TNF-α. This may lead to damage of the pulmonary epithelium, allowing the bacteria to colonize even in the absence of FHA.


Vaccine | 2008

Genetic stability of the live attenuated Bordetella pertussis vaccine candidate BPZE1

Pascal Feunou Feunou; Jamila Ismaili; Anne-Sophie Debrie; Ludovic Huot; David Hot; Dominique Raze; Yves Lemoine; Camille Locht

Despite the extensive use of efficacious pertussis vaccines, Bordetella pertussis infections are still among the main causes for childhood morbidity and mortality. Severe pertussis occurs mostly in very young children, often too young to be sufficiently protected by current vaccines, which require several administrations in regimens that vary between countries. Since natural infection with B. pertussis is able to induce protection, we have developed the live attenuated B. pertussis vaccine strain BPZE1 that protects mice upon a single intranasal administration. This strain was obtained by genetically inactivating pertussis toxin via two point mutations in the ptx gene, by deleting dnt encoding dermonecrotic toxin, and by replacing the B. pertussis ampG gene by Escherichia coli ampG, resulting in the removal of tracheal cytotoxin. Here, we assessed the genetic stability of BPZE1 after 20 and 27 weeks of continuous passaging in vitro and in vivo, respectively. BPZE1 was passaged 20 times in vitro and 9 times in vivo in Balb/C mice. After these passages, 8 hemolytic colonies were analyzed by PCR for the absence of dnt and B. pertussis ampG and the presence of E. coli ampG, by DNA sequencing for the presence of the two ptx point mutations and by DNA microarrays for the global genomic stability. In addition, the protective capacity of BPZE1 was evaluated after the passages. No genetic or protective difference was detected between the passaged bacteria and non-passaged BPZE1, indicating that stability of the vaccine strain is not a concern for BPZE1 to be considered as an attenuated live vaccine against whooping cough.


ChemPhysChem | 2009

Force Spectroscopy of the Interaction Between Mycobacterial Adhesins and Heparan Sulphate Proteoglycan Receptors

Vincent Dupres; Claire Verbelen; Dominique Raze; Frank Lafont; Yves F. Dufrêne

Understanding the molecular interactions between bacterial adhesion proteins (adhesins) and their receptors is essential for elucidating the molecular mechanisms of bacterial pathogenesis. Here, atomic force microscopy (AFM) is used to explore the specific interactions between the heparin-binding hemagglutinin (HBHA) from Mycobacterium tuberculosis, and heparan sulphate proteoglycan (HSPG) receptors on live A549 pneumocytes. First, we show that the specific binding forces between single HBHA-HSPG pairs, 57+/-16 pN, are similar to the forces measured earlier between HBHA and heparin molecules. Second, we mapped the distribution of single HSPG receptors on the surface of A549 cells, revealing that the proteins are widely and homogeneously exposed. Third, we observed force curves with constant force plateaus at large pulling velocities, reflecting the extraction of membrane tethers or nanotubes. These single-molecule measurements provide new avenues in pathogenesis research, particularly for elucidating the molecular basis of pathogen-host interactions.


American Journal of Respiratory and Critical Care Medicine | 2013

Attenuated Bordetella pertussis Vaccine Protects against Respiratory Syncytial Virus Disease via an IL-17–Dependent Mechanism

Corinna Schnoeller; Xavier Le Roux; Devika Sawant; Dominique Raze; Wieslawa Olszewska; Camille Locht; Peter J. M. Openshaw

RATIONALE We attenuated virulent Bordetella pertussis by genetically eliminating or detoxifying three major toxins. This strain, named BPZE1, is being developed as a possible live nasal vaccine for the prevention of whooping cough. It is immunogenic and safe when given intranasally in adult volunteers. OBJECTIVES Before testing in human infants, we wished to examine the potential effect of BPZE1 on a common pediatric infection (respiratory syncytial virus [RSV]) in a preclinical model. METHODS BPZE1 was administered before or after RSV administration in adult or neonatal mice. Pathogen replication, inflammation, immune cell recruitment, and cytokine responses were measured. MEASUREMENTS AND MAIN RESULTS BPZE1 alone did not cause overt disease, but induced efflux of neutrophils into the airway lumen and production of IL-10 and IL-17 by mucosal CD4(+) T cells. Given intranasally before RSV infection, BPZE1 markedly attenuated RSV, preventing weight loss, reducing viral load, and attenuating lung cell recruitment. Given neonatally, BPZE1 also protected against RSV-induced weight loss even through to adulthood. Furthermore, it markedly increased IL-17 production by CD4(+) T cells and natural killer cells and recruited regulatory cells and neutrophils after virus challenge. Administration of anti-IL-17 antibodies ablated the protective effect of BPZE1 on RSV disease. CONCLUSIONS Rather than enhancing RSV disease, BPZE1 protected against viral infection, modified viral responses, and enhanced natural mucosal resistance. Prevention of RSV infection by BPZE1 seems in part to be caused by induction of IL-17. Clinical trial registered with www.clinicaltrials.gov (NCT 01188512).


Journal of Bacteriology | 2007

Single-Molecule Force Spectroscopy of Mycobacterial Adhesin-Adhesin Interactions

Claire Verbelen; Dominique Raze; Frédérique Dewitte; Camille Locht; Yves F. Dufrêne

The heparin-binding hemagglutinin (HBHA) is one of the few virulence factors identified for Mycobacterium tuberculosis. It is a surface-associated adhesin that expresses a number of different activities, including mycobacterial adhesion to nonphagocytic cells and microbial aggregation. Previous evidence indicated that HBHA is likely to form homodimers or homopolymers via a predicted coiled-coil region located within the N-terminal portion of the molecule. Here, we used single-molecule atomic-force microscopy to measure individual homophilic HBHA-HBHA interaction forces. Force curves recorded between tips and supports derivatized with HBHA proteins exposing their N-terminal domains showed a bimodal distribution of binding forces reflecting the formation of dimers or multimers. Moreover, the binding peaks showed elongation forces that were consistent with the unfolding of alpha-helical coiled-coil structures. By contrast, force curves obtained for proteins exposing their lysine-rich C-terminal domains showed a broader distribution of binding events, suggesting that they originate primarily from intermolecular electrostatic bridges between cationic and anionic residues rather than from specific coiled-coil interactions. Notably, similar homophilic HBHA-HBHA interactions were demonstrated on live mycobacteria producing HBHA, while they were not observed on an HBHA-deficient mutant. Together with the fact that HBHA mediates bacterial aggregation, these observations suggest that the single homophilic HBHA interactions measured here reflect the formation of multimers that may promote mycobacterial aggregation.


PLOS ONE | 2012

Differential Contribution of the Repeats to Heparin Binding of HBHA, a Major Adhesin of Mycobacterium tuberculosis

Pierre Lebrun; Dominique Raze; Bernd Fritzinger; Jean-Michel Wieruszeski; Franck Biet; Alexander Dose; Mathieu Carpentier; Dirk Schwarzer; Fabrice Allain; Guy Lippens; Camille Locht

Background Tuberculosis remains one of the most important causes of global mortality and morbidity, and the molecular mechanisms of the pathogenesis are still incompletely understood. Only few virulence factors of the causative agent Mycobacterium tuberculosis are known. One of them is the heparin-binding haemagglutinin (HBHA), an important adhesin for epithelial cells and an extrapulmonary dissemination factor. HBHA mediates mycobacterial adherence to epithelial cells via the interactions of its C-terminal, lysine rich repeat domain with sulfated glycoconjugates on the surface of epithelial cells. Methodology/Principal Findings Using defined heparin sulfate (HS) analogs, we determined the minimal heparin fragment length for HBHA binding and structural adaptations of the HBHA heparin-binding domain (HBD) upon binding to heparin. The NMR studies show significant shifts of all residues in the HBD upon interaction with heparin, with stronger shifts in the last repeats compared to the upstream repeats, and indicated that the HS fragments with 14 sugar units cover the entire C-terminal lysine-rich domain of HBHA. The differential implication of the repeats is determined by the relative position of prolines and lysines within each repeat, and may contribute to binding specificity. GAG binding induces a non-homogeneous structural rearrangement in the HBD, with stabilization of a nascent α-helix only in the last penta-repeats. Conclusion/Significance Mycobacterial HBHA undergoes structural adaptation upon interaction with GAGs, which is likely involved in binding specificities of the adhesin, and mycobacterial pathogens may use HBD polymorphisms for host or organ specificity. Further studies will aim at decoding the complementarity between HBD repeats and HS sequence.

Collaboration


Dive into the Dominique Raze's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yves F. Dufrêne

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Franck Biet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Claire Verbelen

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Vincent Dupres

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge