Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominique Van Der Straeten is active.

Publication


Featured researches published by Dominique Van Der Straeten.


The Plant Cell | 2007

Ethylene Upregulates Auxin Biosynthesis in Arabidopsis Seedlings to Enhance Inhibition of Root Cell Elongation

Ranjan Swarup; Paula Perry; Dik Hagenbeek; Dominique Van Der Straeten; Gerrit T.S. Beemster; Göran Sandberg; Rishikesh P. Bhalerao; Karin Ljung; Malcolm J. Bennett

Ethylene represents an important regulatory signal for root development. Genetic studies in Arabidopsis thaliana have demonstrated that ethylene inhibition of root growth involves another hormone signal, auxin. This study investigated why auxin was required by ethylene to regulate root growth. We initially observed that ethylene positively controls auxin biosynthesis in the root apex. We subsequently demonstrated that ethylene-regulated root growth is dependent on (1) the transport of auxin from the root apex via the lateral root cap and (2) auxin responses occurring in multiple elongation zone tissues. Detailed growth studies revealed that the ability of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid to inhibit root cell elongation was significantly enhanced in the presence of auxin. We conclude that by upregulating auxin biosynthesis, ethylene facilitates its ability to inhibit root cell expansion.


The Plant Cell | 2003

Ethylene Regulates Arabidopsis Development via the Modulation of DELLA Protein Growth Repressor Function

Patrick Achard; Willem Vriezen; Dominique Van Der Straeten; Nicholas P. Harberd

Phytohormones regulate plant development via a poorly understood signal response network. Here, we show that the phytohormone ethylene regulates plant development at least in part via alteration of the properties of DELLA protein nuclear growth repressors, a family of proteins first identified as gibberellin (GA) signaling components. This conclusion is based on the following experimental observations. First, ethylene inhibited Arabidopsis root growth in a DELLA-dependent manner. Second, ethylene delayed the GA-induced disappearance of the DELLA protein repressor of ga1-3 from root cell nuclei via a constitutive triple response-dependent signaling pathway. Third, the ethylene-promoted “apical hook” structure of etiolated seedling hypocotyls was dependent on the relief of DELLA-mediated growth restraint. Ethylene, auxin, and GA responses now can be attributed to effects on DELLA function, suggesting that DELLA plays a key integrative role in the phytohormone signal response network.


Journal of Biological Chemistry | 2007

Cryptochrome Blue Light Photoreceptors Are Activated through Interconversion of Flavin Redox States

Jean-Pierre Bouly; Erik Schleicher; Maribel Dionisio-Sese; Filip Vandenbussche; Dominique Van Der Straeten; Nadia Bakrim; Stefan Meier; Alfred Batschauer; Paul Galland; Robert Bittl; Margaret Ahmad

Cryptochromes are blue light-sensing photoreceptors found in plants, animals, and humans. They are known to play key roles in the regulation of the circadian clock and in development. However, despite striking structural similarities to photolyase DNA repair enzymes, cryptochromes do not repair double-stranded DNA, and their mechanism of action is unknown. Recently, a blue light-dependent intramolecular electron transfer to the excited state flavin was characterized and proposed as the primary mechanism of light activation. The resulting formation of a stable neutral flavin semiquinone intermediate enables the photoreceptor to absorb green/yellow light (500–630 nm) in addition to blue light in vitro. Here, we demonstrate that Arabidopsis cryptochrome activation by blue light can be inhibited by green light in vivo consistent with a change of the cofactor redox state. We further characterize light-dependent changes in the cryptochrome1 (cry1) protein in living cells, which match photoreduction of the purified cry1 in vitro. These experiments were performed using fluorescence absorption/emission and EPR on whole cells and thereby represent one of the few examples of the active state of a known photoreceptor being monitored in vivo. These results indicate that cry1 activation via blue light initiates formation of a flavosemiquinone signaling state that can be converted by green light to an inactive form. In summary, cryptochrome activation via flavin photoreduction is a reversible mechanism novel to blue light photoreceptors. This photocycle may have adaptive significance for sensing the quality of the light environment in multiple organisms.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes

Patrick Achard; Mourad Baghour; Andrew Chapple; Peter Hedden; Dominique Van Der Straeten; Pascal Genschik; Thomas Moritz; Nicholas P. Harberd

The length of the Arabidopsis thaliana life cycle depends on the timing of the floral transition. Here, we define the relationship between the plant stress hormone ethylene and the timing of floral initiation. Ethylene signaling is activated by diverse environmental stresses, but it was not previously clear how ethylene regulates flowering. First, we show that ethylene delays flowering in Arabidopsis, and that this delay is partly rescued by loss-of-function mutations in genes encoding the DELLAs, a family of nuclear gibberellin (GA)-regulated growth-repressing proteins. This finding suggests that ethylene may act in part by modulating DELLA activity. We also show that activated ethylene signaling reduces bioactive GA levels, thus enhancing the accumulation of DELLAs. Next, we show that ethylene acts on DELLAs via the CTR1-dependent ethylene response pathway, most likely downstream of the transcriptional regulator EIN3. Ethylene-enhanced DELLA accumulation in turn delays flowering via repression of the floral meristem-identity genes LEAFY (LFY) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). Our findings establish a link between the CTR1/EIN3-dependent ethylene and GA–DELLA signaling pathways that enables adaptively significant regulation of plant life cycle progression in response to environmental adversity.


Trends in Plant Science | 2000

Imaging techniques and the early detection of plant stress

Laury Chaerle; Dominique Van Der Straeten

D.V.D.S. is a Research Director of the Fund for Scientific Research (Flanders). We wish to thank Roland Valcke for critical reading.


Development | 2010

Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana.

Petra Žádníková; Jan Petrášek; Peter Marhavý; Vered Raz; Filip Vandenbussche; Zhaojun Ding; Kateřina Schwarzerová; Miyo Terao Morita; Masao Tasaka; Jan Hejátko; Dominique Van Der Straeten; Jiří Friml; Eva Benková

The apical hook of dark-grown Arabidopsis seedlings is a simple structure that develops soon after germination to protect the meristem tissues during emergence through the soil and that opens upon exposure to light. Differential growth at the apical hook proceeds in three sequential steps that are regulated by multiple hormones, principally auxin and ethylene. We show that the progress of the apical hook through these developmental phases depends on the dynamic, asymmetric distribution of auxin, which is regulated by auxin efflux carriers of the PIN family. Several PIN proteins exhibited specific, partially overlapping spatial and temporal expression patterns, and their subcellular localization suggested auxin fluxes during hook development. Genetic manipulation of individual PIN activities interfered with different stages of hook development, implying that specific combinations of PIN genes are required for progress of the apical hook through the developmental phases. Furthermore, ethylene might modulate apical hook development by prolonging the formation phase and strongly suppressing the maintenance phase. This ethylene effect is in part mediated by regulation of PIN-dependent auxin efflux and auxin signaling.


Nature Biotechnology | 2007

Folate fortification of rice by metabolic engineering

Sergei Storozhenko; Veerle De Brouwer; Maarten Volckaert; Oscar Navarrete; Dieter Blancquaert; Guo Fang Zhang; Willy Lambert; Dominique Van Der Straeten

Rice, the worlds major staple crop, is a poor source of essential micronutrients, including folates (vitamin B9). We report folate biofortification of rice seeds achieved by overexpressing two Arabidopsis thaliana genes of the pterin and para-aminobenzoate branches of the folate biosynthetic pathway from a single locus. We obtained a maximal enhancement as high as 100 times above wild type, with 100 g of polished raw grains containing up to four times the adult daily folate requirement.


Biochimica et Biophysica Acta | 2001

Seeing is believing: imaging techniques to monitor plant health

Laury Chaerle; Dominique Van Der Straeten

Historically, early stress-induced changes in plants have been mainly detected after destructive sampling followed by biochemical and molecular determinations. Imaging techniques that allow immediate detection of stress-situations, before visual symptoms appear and adverse effects become established, are emerging as promising tools for crop yield management. Such monitoring approaches can also be applied to screen plant populations for mutants with increased stress tolerance. At the laboratory scale, different imaging methods can be tested and one or a combination best suited for crop surveillance chosen. The system of choice can be applied under controlled laboratory conditions to guide selective sampling for the molecular characterisation of rapid stress-induced changes. Such an approach permits to isolate presymptomatically induced genes, or to obtain a panoramic view of early gene expression using gene-arrays when plants undergo physiological changes undetected by the human eye. Using this knowledge, plants can be engineered to be more stress resistant, and tested for field performance by the same methodologies. In ongoing efforts of genome characterisation, genes of unknown function are revealed at an ever-accelerating pace. By monitoring changes in phenotypic characteristics of transgenic plants expressing those genes, imaging techniques could help to identify their function.


Development | 2010

The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings.

Filip Vandenbussche; Jan Petrášek; Petra Žádníková; Klára Hoyerová; Bedřich Pešek; Vered Raz; Ranjan Swarup; Malcolm J. Bennett; Eva Zažímalová; Eva Benková; Dominique Van Der Straeten

Dark-grown dicotyledonous seedlings form a hook-like structure at the top of the hypocotyl, which is controlled by the hormones auxin and ethylene. Hook formation is dependent on an auxin signal gradient, whereas hook exaggeration is part of the triple response provoked by ethylene in dark-grown Arabidopsis seedlings. Several other hormones and light are also known to be involved in hook development, but the molecular mechanisms that lead to the initial installation of an auxin gradient are still poorly understood. In this study, we aimed to unravel the cross-talk between auxin and ethylene in the apical hook. Auxin measurements, the expression pattern of the auxin reporter DR5::GUS and the localization of auxin biosynthesis enzymes and influx carriers collectively indicate the necessity for auxin biosynthesis and efficient auxin translocation from the cotyledons and meristem into the hypocotyl in order to support proper hook development. Auxin accumulation in the meristem and cotyledons and in the hypocotyl is increased ∼2-fold upon treatment with ethylene. In addition, a strong ethylene signal leads to enhanced auxin biosynthesis at the inner side of the hook. Finally, mutant analysis demonstrates that the auxin influx carrier LAX3 is indispensable for proper hook formation, whereas the auxin influx carrier AUX1 is involved in the hook exaggeration phenotype induced by ethylene.


Plant Physiology | 2003

Ethylene and auxin control the Arabidopsis response to decreased light intensity.

Filip Vandenbussche; Willem Vriezen; Jan Smalle; Lucas J.J. Laarhoven; Frans J. M. Harren; Dominique Van Der Straeten

Morphological responses of plants to shading have long been studied as a function of light quality, in particular the ratio of red to far red light that affects phytochrome activity. However, changes in light quantity are also expected to be important for the shading response because plants have to adapt to the reduction in overall energy input. Here, we present data on the involvement of auxin and ethylene in the response to low light intensities. Decreased light intensities coincided with increased ethylene production in Arabidopsis rosettes. This response was rapid because the plants reacted within minutes. In addition, ethylene- and auxin-insensitive mutants are impaired in their reaction to shading, which is reflected by a defect in leaf elevation and an aberrant leaf biomass allocation. On the molecular level, several auxin-inducible genes are up-regulated in wild-type Arabidopsis in response to a reduction in light intensity, including the primary auxin response gene IAA3 and a protein with similarity to AUX22 and the 1-aminocyclopropane-1-carboxylic acid synthase genes ACS6, ACS8, and ACS9 that are involved in ethylene biosynthesis. Taken together, the data show that ethylene and auxin signaling are required for the response to low light intensities.

Collaboration


Dive into the Dominique Van Der Straeten's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Van Montagu

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge