Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominique Verreault is active.

Publication


Featured researches published by Dominique Verreault.


Langmuir | 2012

Nonfouling poly(ethylene oxide) layers end-tethered to polydopamine

Ognen Pop-Georgievski; Dominique Verreault; Mark Oliver Diesner; Stefan Heissler; František Rypáček; P. Koelsch

Nonfouling surfaces capable of reducing protein adsorption are highly desirable in a wide range of applications. Coating of surfaces with poly(ethylene oxide) (PEO), a water-soluble, nontoxic, and nonimmunogenic polymer, is most frequently used to reduce nonspecific protein adsorption. Here we show how to prepare dense PEO brushes on virtually any substrate by tethering PEO to polydopamine (PDA)-modified surfaces. The chain lengths of hetero-bifunctional PEOs were varied in the range of 45-500 oxyethylene units (M(n) = 2000-20,000). End-tethering of PEO chains was performed through amine and thiol headgroups from reactive polymer melts to minimize excluded volume effects. Surface plasmon resonance (SPR) was applied to investigate the adsorption of model protein solutions and complex biologic medium (human blood plasma) to the densely packed PEO brushes. The level of protein adsorption of human serum albumin and fibrinogen solutions was below the detection limit of the SPR measurements for all PEO chains end-tethered to PDA, thus exceeding the protein resistance of PEO layers tethered directly on gold. It was found that the surface resistance to adsorption of lysozyme and human blood plasma increased with increasing length and brush character of the PEO chains end-tethered to PDA with a similar or better resistance in comparison to PEO layers on gold. Furthermore, the chain density, thickness, swelling, and conformation of PEO layers were determined using spectroscopic ellipsometry (SE), dynamic water contact angle (DCA) measurements, infrared reflection-absorption spectroscopy (IRRAS), and vibrational sum-frequency-generation (VSFG) spectroscopy, the latter in air and water.


Journal of Physical Chemistry Letters | 2012

From Conventional to Phase-Sensitive Vibrational Sum Frequency Generation Spectroscopy: Probing Water Organization at Aqueous Interfaces

Dominique Verreault; Wei Hua; Heather C. Allen

Elucidation of water organization at aqueous interfaces has remained a challenging problem. Conventional vibrational sum frequency generation (VSFG) spectroscopy and its most recent extension, phase-sensitive VSFG (PS-VSFG), have emerged as powerful experimental methods for unraveling structural information at various aqueous interfaces. In this Perspective, we briefly describe the two possible VSFG detection modes, and we point out features that make these methods highly suited to address questions about water organization at air/aqueous interfaces. Several important aqueous interfacial systems are discussed to illustrate the versatility of these methods. Remaining challenges and exciting prospective directions are also presented.


Review of Scientific Instruments | 2010

Sample cells for probing solid/liquid interfaces with broadband sum-frequency-generation spectroscopy.

Dominique Verreault; Volker Kurz; Caitlin Howell; Patrick Koelsch

Two sample cells designed specifically for sum-frequency-generation (SFG) measurements at the solid/liquid interface were developed: one thin-layer analysis cell allowing measurement of films on reflective metallic surfaces through a micrometer layer of solution and one spectroelectrochemical cell allowing investigation of processes at the indium tin oxide/solution interface. Both sample cells are described in detail and data illustrating the capabilities of each are shown. To further improve measurements at solid/liquid interfaces, the broadband SFG system was modified to include a reference beam which can be measured simultaneously with the sample signal, permitting background correction of SFG spectra in real time. Sensitivity tests of this system yielded a signal-to-noise ratio of 100 at a surface coverage of 0.2 molecules/nm(2). Details on data analysis routines, pulse shaping methods of the visible beam, as well as the design of a purging chamber and sample stage setup are presented. These descriptions will be useful to those planning to set up a SFG spectrometer or seeking to optimize their own SFG systems for measurements of solid/liquid interfaces.


Journal of Physical Chemistry B | 2016

Surface Potential of DPPC Monolayers on Concentrated Aqueous Salt Solutions.

Clayton B. Casper; Dominique Verreault; Ellen M. Adams; Wei Hua; Heather C. Allen

The presence and exchange of electrical charges on the surfaces of marine aerosols influence their ability to act as cloud condensation nuclei and play a role in thundercloud electrification. Although interactions exist between surface-active inorganic ions and organic compounds, their role in surface charging of marine aerosols is not well understood. In this study, the surface potential of dipalmitoylphosphatidylcholine (DPPC) monolayers, a zwitterionic phospholipid found in the sea surface microlayer, is measured on concentrated (0.3-2.0 M) chloride salt solutions containing marine-relevant cations (Na(+), K(+), Mg(2+), Ca(2+)) to model and elucidate the electrical properties of organic-covered marine aerosols. Monovalent cations show only a weak effect on the surface potential of DPPC monolayers in the condensed phase compared to water. In contrast, Mg(2+) and Ca(2+) increase the surface potential, indicating different cation binding modes and affinities for the PC headgroup. Moreover, it is found that for divalent chloride salt solutions, the PC headgroup and interfacial water molecules make the largest dipolar contribution to the surface potential. This study shows that for equal charge concentrations, divalent cations impact surface potential of DPPC monolayers more strongly than monovalents likely through changes in the PC headgroup orientation induced by their complexation along with the lesser ordering of interfacial water molecules caused by phosphate group charge screening.


Journal of Physical Chemistry B | 2014

Cation effects on interfacial water organization of aqueous chloride solutions. I. Monovalent cations: Li+, Na+, K+, and NH4(+).

Wei Hua; Dominique Verreault; Zishuai Huang; Ellen M. Adams; Heather C. Allen

The influence of monovalent cations on the interfacial water organization of alkali (LiCl, NaCl, and KCl) and ammonium chloride (NH4Cl) salt solutions was investigated using surface-sensitive conventional vibrational sum frequency generation (VSFG) and heterodyne-detected (HD-)VSFG spectroscopy. It was found in the conventional VSFG spectra that LiCl and NH4Cl significantly perturb water’s hydrogen-bonding network. In contrast, NaCl and KCl had little effect on the interfacial water structure and exhibited weak concentration dependency. The Im χs(2)(ωIR) spectra from HD-VSFG further revealed that, for all chloride solutions, the net transition dipole moments of hydrogen-bonded water molecules (O → H) are oriented more toward the vapor phase relative to neat water. This suggests the presence of an interfacial electric field generated from the formation of an ionic double layer in the interfacial region with a distribution of Cl(-) ions located above the countercations, in agreement with predictions from MD simulations. The magnitude of this electric field shows a small but definite cation specificity and follows the order Li(+) ≈ Na(+) > NH4(+) > K(+). The observed trend was found to be in good agreement with previously published surface potential data.


Journal of Physical Chemistry Letters | 2013

Surface Prevalence of Perchlorate Anions at the Air/Aqueous Interface.

Wei Hua; Dominique Verreault; Heather C. Allen

Air/aqueous interfaces provide a unique environment for many chemical, environmental, and biological processes. To gain insight, molecular-level understanding of the interfacial water organization and ion distributions at these interfaces is required. Here, the air/aqueous interface of NaClO4 salt solutions was investigated by means of conventional and heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectroscopy. It is found that perchlorate (ClO4(-)) ions exist in the interfacial region and prefer to reside on average above their counterions. This finding is inferred from the average orientation of the OH transition dipole moment of interfacial water molecules governed by the direction of the net electric field arising from the interfacial ion distributions. At the air/aqueous interface of NaClO4 salt solutions, the net dipole moments of hydrogen-bonded water molecules are oriented preferentially toward the vapor phase. Contrary to some other salts (e.g., sulfates), the presence of ClO4(-) may cause a full reversal in the direction of the interfacial electric field at a higher concentration (≥1.7 M). Another interpretation for the positive Im χ((2)) spectra of NaClO4 salt solutions could be an increase in the population of water species contributing positively to the net OH transition dipole moment. Regardless of the mechanism, this effect becomes even more pronounced with increasing salt concentration.


Physical Chemistry Chemical Physics | 2016

Surface organization of a DPPC monolayer on concentrated SrCl2 and ZnCl2 solutions

Ellen M. Adams; Dominique Verreault; Thilina Jayarathne; Richard E. Cochran; Elizabeth A. Stone; Heather C. Allen

Transition metals are known to be enriched in organic-coated marine aerosols, but the impact these cations have on their surface properties is not well understood. Here the effect of Zn2+ enrichment on the surface properties of a dipalmitoylphosphatidylcholine (DPPC) monolayer was investigated and compared to that of the alkaline earth metal Sr2+, an ion not enriched in aerosols. Phase behavior of the DPPC film on concentrated aqueous solutions was probed with surface pressure-area isotherms while domain morphology was monitored with Brewster angle microscopy (BAM). Infrared reflection-absorption spectroscopy (IRRAS) and vibrational sum frequency generation (VSFG) spectroscopy were used to assess the impact of cations on the conformation and orientation of alkyl chains as well as the hydration state of the carbonyl and phosphatidylcholine (PC) moieties. Results of compression isotherms and BAM show that Zn2+ strongly interacts with DPPC molecules, and induces condensation of the monolayer while Sr2+ only weakly interacts with the monolayer in expanded phases. Conformational order and orientation of alkyl chains in the condensed phase are not significantly altered by either cation. IRRAS indicates that Sr2+ has weak interactions with the PC headgroup. Zn2+ ions cause dehydration of carbonyl groups and binds to the phosphate group in a 2 : 1 bridging complex. Findings here suggest that Sr2+ is not enriched in aerosols because it behaves similar to a monovalent ion and only weakly interacts with the monolayer, while enrichment of Zn2+ is due to strong binding to the lipid film.


Journal of the American Chemical Society | 2015

Relative Order of Sulfuric Acid, Bisulfate, Hydronium, and Cations at the Air–Water Interface

Wei Hua; Dominique Verreault; Heather C. Allen

Sulfuric acid (H2SO4), bisulfate (HSO4(-)), and sulfate (SO4(2-)) are among the most abundant species in tropospheric and stratospheric aerosols due to high levels of atmospheric SO2 emitted from biomass burning and volcanic eruptions. The air/aqueous interfaces of sulfuric acid and bisulfate solutions play key roles in heterogeneous reactions, acid rain, radiative balance, and polar stratospheric cloud nucleation. Molecular-level knowledge about the interfacial distribution of these inorganic species and their perturbation of water organization facilitates a better understanding of the reactivity and growth of atmospheric aerosols and of the aerosol surface charge, thus shedding light on topics of air pollution, climate change, and thundercloud electrification. Here, the air/aqueous interface of NaHSO4, NH4HSO4, and Mg(HSO4)2 salt solutions as well as H2SO4 and HCl acid solutions are investigated by means of vibrational sum frequency generation (VSFG) and heterodyne-detected (HD) VSFG spectroscopy. VSFG spectra of all acid solutions show higher SFG response in the OH-bonded region relative to neat water, with 1.1 M H2SO4 being more enhanced than 1.1 M HCl. In addition, VSFG spectra of bisulfate salt solutions highly resemble that of the dilute H2SO4 solution (0.26 M) at a comparable pH. HD-VSFG (Im χ((2))) spectra of acid and bisulfate salt solutions further reveal that hydrogen-bonded water molecules are oriented preferentially toward the bulk liquid phase. General agreement between Im χ((2)) spectra of 1.1 M H2SO4 and 1.1 M HCl acid solutions indicate that HSO4(-) ions have a similar surface preference as that of chloride (Cl(-)) ions. By comparing the direction and magnitude of the electric fields arising from the interfacial ion distributions and the concentration of each species, the most reasonable relative surface preference that can be deduced from a simplified model follows the order H3O(+) > HSO4(-) > Na(+), NH4(+), Mg(2+) > SO4(2-). Interestingly, contrary to some other near-neutral salt solution interfaces (e.g., chlorides and nitrates), cation-specific effects are here overshadowed by hydronium ions.


ChemPhysChem | 2015

Solvation of Calcium-Phosphate Headgroup Complexes at the DPPC/Aqueous Interface.

Wei Hua; Dominique Verreault; Heather C. Allen

The effects of sodium (Na(+) ) and calcium (Ca(2+) ) cations on model zwitterionic dipalmitoylphosphatidylcholine (DPPC) monolayers spread on metal chloride salt solutions are investigated by means of vibrational sum frequency generation (VSFG) and heterodyne-detected (HD)-VSFG spectroscopy. VSFG and HD-VSFG spectra in the OH stretching region reveal cation-specific effects on the interfacial waters H-bonding network, knowledge of which has been limited to date. It is found that low-concentrated Ca(2+) more strongly perturbs interfacial water organization relative to highly concentrated Na(+) . At higher Ca(2+) concentrations, the water H-bonding network at the DPPC/CaCl2 interface reorganizes and the resulting spectrum closely follows that of the bare air/CaCl2 interface up to ∼3400 cm(-1) . Most interesting is the appearance of a negative band at ∼3450 cm(-1) in the DPPC/CaCl2 Im χs ((2)) spectra, likely arising from an asymmetric solvation of Ca(2+) -phosphate headgroup complexes. This gives rise to an electric field that orients the net OH transition moments of a subset of OH dipoles toward the bulk solution.


Journal of Physical Chemistry A | 2013

Salty Glycerol versus Salty Water Surface Organization: Bromide and Iodide Surface Propensities

Zishuai Huang; Wei Hua; Dominique Verreault; Heather C. Allen

Salty NaBr and NaI glycerol solution interfaces are examined in the OH stretching region using broadband vibrational sum frequency generation (VSFG) spectroscopy. Raman and infrared (IR) spectroscopy are used to further understand the VSFG spectroscopic signature. The VSFG spectra of salty glycerol solutions reveal that bromide and iodide anions perturb the interfacial glycerol organization in a manner similar as that found in aqueous halide salt solutions, thus confirming the presence of bromide and iodide anions at the glycerol surface. Surface tension measurements are consistent with the surface propensity suggested by the VSFG data and also show that the surface excess increases with increasing salt concentration, similar to that of water. In addition, iodide is shown to have more surface prevalence than bromide, as has also been determined from aqueous solutions. These results suggest that glycerol behaves similarly to water with respect to surface activity and solvation of halide anions at its air/liquid interface.

Collaboration


Dive into the Dominique Verreault's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Hua

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge