Don E. Otter
AgResearch
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Don E. Otter.
Journal of Nutrition | 2012
Caroline Thum; Adrian L. Cookson; Don E. Otter; Warren C. McNabb; Alison J. Hodgkinson; Jolon Dyer; Nicole C. Roy
The gastrointestinal microbiota plays an important role in maintaining host health by preventing the colonization of pathogens, fermenting dietary compounds, and maintaining normal mucosal immunity. Particularly in early life, the composition of the microbiota profoundly influences the development and maturation of the gastrointestinal tract (GIT) mucosa, which may affect health in later life. Therefore, strategies to manipulate the microbiota during infancy may prevent the development of some diseases later in adult life. Earlier research suggested that term fetuses are sterile and that the initial bacterial colonization of the newborn GIT occurs only after the baby transits through the birth canal. However, recent studies have demonstrated that the colonization and/or contact of the fetus with the maternal GIT microbiota may start in utero. After vaginal birth, the colonization of the neonate GIT continues through contact with maternal feces and vaginal bacteria, leading to a relatively simple microbial community that is influenced by feeding type (breast vs. formula feeding). Maternal GIT microbiota, vaginal microbiota, and breast milk composition are influenced by maternal diet. Alterations of the maternal GIT microbiota composition via supplementation with probiotics and prebiotics have been shown; however, transfer of these benefits to the offspring remains to be demonstrated. This review focuses on the influence of maternal GIT microbiota during the pre- and postpartum periods on the colonization of the infant GIT. In particular, it examines the manipulation of the maternal GIT microbiota composition through the use of probiotics and/or prebiotics and subsequent consequences for the health of the offspring.
Food Chemistry | 2012
Karl Fraser; Scott James Harrison; Geoff A. Lane; Don E. Otter; Yacine Hemar; Siew Young Quek; Susanne Rasmussen
Tea is the second most consumed beverage in the world and its consumption has been associated with numerous potential health benefits. Factors such as fermentation methods, geographical origin and season can affect the primary and secondary metabolite composition of tea. In this study, a hydrophilic interaction liquid chromatography (HILIC) method coupled to high resolution mass spectrometry in both positive and negative ionisation modes was developed and optimised. The method when combined with principal component analysis to analyse three different types of tea, successfully distinguished samples into different categories, and provided evidence of the metabolites which differed between them. The accurate mass and high resolution attributes of the mass spectrometric data were utilised and relative quantification data were extracted post-data acquisition on 18 amino acids, showing significant differences in amino acid concentrations between tea types and countries. This study highlights the potential of HILIC chromatography combined with non-targeted mass spectrometric methods to provide a comprehensive understanding of polar metabolites in plant extracts.
Food Chemistry | 2013
Karl Fraser; Geoff A. Lane; Don E. Otter; Scott James Harrison; Siew Young Quek; Yacine Hemar; Susanne Rasmussen
Factors such as fermentation methods, geographical origin and season can affect the biochemical composition of tea leaves (Camellia sinensis L.). In this study, the biochemical composition of oolong tea during the manufacturing and fermentation process was studied using a non-targeted method utilising ambient ionisation with a direct analysis in real time (DART) ion source and mass spectrometry (MS). Caffeine dominated the positive ionisation spectra throughout the manufacturing process, while the negative ion spectra collected during manufacturing were rich in ions likely to be surface lipids. Correlation analyses on the spectra revealed two volatile compounds tentatively identified as indole and geranic acid, along with ammonium and caffeine clusters/adducts with geranic acid that increased in concentration during the fermentation stages of the process. The tentative identifications were assigned using a combination of DART-ion-trap MS(n) and DART-accurate mass MS(1) and MS(2) on tea samples and standard compounds. This study highlights the potential of DART-MS to rapidly monitor the progress of complex manufacturing processes such as tea fermentation.
Applied and Environmental Microbiology | 2012
Wayne Young; Nicole C. Roy; Julian Lee; Blair Lawley; Don E. Otter; Gemma Henderson; Mark J. McCann; Gerald W. Tannock
ABSTRACT The ability to predictably engineer the composition of bowel microbial communities (microbiota) using dietary components is important because of the reported associations of altered microbiota composition with medical conditions. In a synecological study, weanling conventional Sprague-Dawley rats (21 days old) were fed a basal diet (BD) or a diet supplemented with resistant starch (RS) at 5%, 2.5%, or 1.25% for 28 days. Pyrosequencing of 16S rRNA genes and temporal temperature gradient electrophoresis (TTGE) profiles in the colonic digesta showed that rats fed RS had altered microbiota compositions due to blooms of Bacteroidetes and Actinobacteria. The altered microbiota was associated with changes in colonic short-chain fatty acid (SCFA) concentrations, colonic-tissue gene expression (Gsta2 and Ela1), and host physiology (serum metabolite profiles and colonic goblet cell numbers). Comparisons between germ-free and conventional rats showed that transcriptional and serum metabolite differences were mediated by the microbiota and were not the direct result of diet composition. Altered transcriptomic and physiological responses may reflect the young hosts attempts to maintain homeostasis as a consequence of exposure to a new collection of bacteria and their associated biochemistry.
Critical Reviews in Food Science and Nutrition | 2014
Karl Fraser; Scott James Harrison; Geoff A. Lane; Don E. Otter; Yacine Hemar; Siew Young Quek; Susanne Rasmussen
Tea is the second most consumed beverage in the world after water and there are numerous reported health benefits as a result of consuming tea, such as reducing the risk of cardiovascular disease and many types of cancer. Thus, there is much interest in the chemical composition of teas, for example; defining components responsible for contributing to reported health benefits; defining quality characteristics such as product flavor; and monitoring for pesticide residues to comply with food safety import/export requirements. Covered in this review are some of the latest developments in mass spectrometry-based analytical techniques for measuring and characterizing low molecular weight components of tea, in particular primary and secondary metabolites. The methodology; more specifically the chromatography and detection mechanisms used in both targeted and non-targeted studies, and their main advantages and disadvantages are discussed. Finally, we comment on the latest techniques that are likely to have significant benefit to analysts in the future, not merely in the area of tea research, but in the analytical chemistry of low molecular weight compounds in general.
Scientific Reports | 2016
William J. Kelly; Adrian L. Cookson; Eric Altermann; Suzanne C. Lambie; Rechelle Perry; Koon Hoong Teh; Don E. Otter; Nicole Shapiro; Tanja Woyke; Sinead C. Leahy
Ruminant animals contribute significantly to the global value of agriculture and rely on a complex microbial community for efficient digestion. However, little is known of how this microbial-host relationship develops and is maintained. To begin to address this, we have determined the ability of three Bifidobacterium species isolated from the faeces of newborn calves to grow on carbohydrates typical of a newborn ruminant diet. Genome sequences have been determined for these bacteria with analysis of the genomes providing insights into the host association and identification of several genes that may mediate interactions with the ruminant gastrointestinal tract. The present study provides a starting point from which we can define the role of potential beneficial microbes in the nutrition of young ruminants and begin to influence the interactions between the microbiota and the host. The differences observed in genomic content hint at niche partitioning among the bifidobacterial species analysed and the different strategies they employ to successfully adapt to this habitat.
Food Research International | 2013
Karl Fraser; Geoff A. Lane; Don E. Otter; Yacine Hemar; Siew Young Quek; Scott James Harrison; Susanne Rasmussen
Food Chemistry | 2014
Karl Fraser; Geoff A. Lane; Don E. Otter; Scott James Harrison; Siew Young Quek; Yacine Hemar; Susanne Rasmussen
British Journal of Nutrition | 2012
Don E. Otter
Journal of Food Composition and Analysis | 2012
Karl Fraser; Scott James Harrison; Geoff A. Lane; Don E. Otter; Yacine Hemar; Siew Young Quek; Susanne Rasmussen