Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald A. Fischman is active.

Publication


Featured researches published by Donald A. Fischman.


The FASEB Journal | 2002

Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains

Jonathan H. Zippin; Yanqiu Chen; Patrick C. Nahirney; Margarita Kamenetsky; Mark S. Wuttke; Donald A. Fischman; Lonny R. Levin; Jochen Buck

Intracellular targets of the ubiquitous second messenger cAMP are located at great distances from the most widely studied source of cAMP, the G protein responsive transmembrane adenylyl cyclases. We previously identified an alternative source of cAMP in mammalian cells lacking transmembrane spanning domains, the “soluble” adenylyl cyclase (sAC). We now demonstrate that sAC is distributed in specific subcellular compartments: mitochondria, centrioles, mitotic spindles, mid‐bodies, and nuclei, all of which contain cAMP targets. Distribution at these intracellular sites proves that adenylyl cyclases are in close proximity to all cAMP effectors, suggesting a model in which local concentrations of cAMP are regulated by individual adenylyl cyclases targeted to specific microdomains throughout the cell.


Journal of Cell Biology | 2004

Bicarbonate-responsive "soluble" adenylyl cyclase defines a nuclear cAMP microdomain.

Jonathan H. Zippin; Jeanne Farrell; David R Huron; Margarita Kamenetsky; Kenneth C. Hess; Donald A. Fischman; Lonny R. Levin; Jochen Buck

Bicarbonate-responsive “soluble” adenylyl cyclase resides, in part, inside the mammalian cell nucleus where it stimulates the activity of nuclear protein kinase A to phosphorylate the cAMP response element binding protein (CREB). The existence of this complete and functional, nuclear-localized cAMP pathway establishes that cAMP signals in intracellular microdomains and identifies an alternate pathway leading to CREB activation.


Experimental Cell Research | 1991

In vivo analysis of a new lacZ retrovirus vector suitable for cell lineage marking in avian and other species

Takashi Mikawa; Donald A. Fischman; Joseph P. Dougherty; Anthony M. C. Brown

To obtain a replication-defective retrovirus vector well suited for cell lineage marking in early avian embryos, we have constructed and tested a derivative of the avian spleen necrosis virus (SNV) carrying the marker gene lacZ. Consistently high titers of this virus, designated CXL, were produced from retroviral packaging cells with no evidence of contaminating helper virus even after 12 months of continuous culture. CXL expresses lacZ strongly and stably in avian cells and has a host range that extends to other avian and some mammalian species. We show that CXL has the potential to mark a wide variety of chick embryo cell types by infection in ovo. The high titers obtainable with this virus can provide a significant advantage over alternative lacZ vectors, especially in lineage marking of early stage embryos. As an example of this, we show that CXL can be used to mark cells of the precardiac mesoderm in stage 4-5 chick embryos.


Developmental Dynamics | 2003

Evidence for an extracellular matrix bridge guiding proepicardial cell migration to the myocardium of chick embryos

Patrick C. Nahirney; Takashi Mikawa; Donald A. Fischman

During heart development, the proepicardium (PE) gives rise to cells of the epicardial epithelium, connective tissue of the subepicardium and the myocardium, and smooth muscle, endothelium, and connective tissue of the coronary arteries. The PE arises as an outgrowth of the pericardial serosa at embryonic day 2 (Hamburger and Hamilton stage [HH] 14) of chick development. Between stages HH14 and HH17, multicellular villous projections extend from the PE toward the dorsal aspect of the lesser curvature of the myocardium. On reaching the atrioventricular (AV) junction, the cells spread over the myocardium, eventually enveloping the complete heart surface as a simple squamous epithelium. Although the lineage of the PE cells is well established, it remains uncertain how cells of the PE reach the myocardial surface and specifically target the AV junction. By using a combination of serial section reconstructions, immunofluorescence, and electron microscopy, we have identified an extracellular matrix bridge (ECMB) spanning the coelomic cavity between the PE and the myocardium. The ECMB is first detectable at HH14 and persists until the PE contacts the bare myocardial surface. This ECMB stains intensely with ruthenium red and Alcian blue, contains heparan sulfate and fibronectin, and exhibits both fibrillar and globular ultrastructure, reminiscent of proteoglycans. After PE attachment to the myocardium (HH16–HH17), the subepicardium exhibited strong staining for heparan sulfate. Heparinase injection into the pericardial coelom at HH15 resulted in aberrant development of the primordial epicardium. On the basis of these studies, we suggest that the ECMB may participate in migration and targeting of the PE to the myocardium. Developmental Dynamics 227:511–523, 2003.


Journal of Muscle Research and Cell Motility | 1992

Myosin heavy chain composition of single fibres and their origins and distribution in developing fascicles of sheep tibialis cranialis muscles.

Alfred Maier; McEwan Jc; Dodds Kg; Donald A. Fischman; R. B. Fitzsimons; Harris Aj

SummaryThe myosin heavy chain (MHC) composition of single muscle fibres in developing sheep tibialis cranialis muscles was examined immunohistochemically with monoclonal antibodies to MHC isozymes. Data were collected with conventional microscopy and computerized image analysis from embryonic day (E) 76 to postnatal day (PN) 20, and from adult animals. At E76, 23% of the young myofibres stained for slow-twitch MHC. The number of these fibres considerably exceeded the number of primary and secondary myotubes. By E100, smaller fibres, negative for slow-twitch MHC, encircled each fibre from the initial population to form rosettes. A second population of small fibres appeared in the unoccupied spaces between rosettes. Small fibres, whether belonging to rosettes or not, did not initially express slow-twitch MHC, expressing mainly neonatal myosin instead. These small fibres then diverged into three separate groups. In the first group most fibres transiently expressed adult fast myosin (maximal at E110–E120), but in the adult expressed slow myosin. This transformation to the slow MHC phenotype commenced at E110, was nearing completion by 20 postnatal days, and was responsible for approximately 60% of the adult slow twitch fibre population. In the other two groups expression of adult fast MHC was maintained, and in the adult they accounted for 14% (IIa MHC) and 17% (IIb MHC) of the total fibre numbers. We conclude that muscle fibre formation in this large muscle involves at least three generations of myotube. Secondary myotubes are generated on a framework of primary myotubes and both populations differentiate into the young myofibres which we observed at E76 to form rosettes. Tertiary myotubes, in turn, appear in the spaces between rosettes and along the borders of fascicles, using the outer fibres of rosettes as scaffolds.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 1999

Slow Tonic Muscle Fibers in the Thyroarytenoid Muscles of Human Vocal Folds; A Possible Specialization for Speech

Yingshi Han; Jun Wang; Donald A. Fischman; Hugh F. Biller; Ira Sanders

Most of the sounds of human speech are produced by vibration of the vocal folds, yet the biomechanics and control of these vibrations are poorly understood. In this study the muscle within the vocal fold, the thyroarytenoid muscle (TA), was examined for the presence and distribution of slow tonic muscle fibers (STF), a rare muscle fiber type with unique contraction properties. Nine human TAs were frozen and serially sectioned in the frontal plane. The presence and distribution pattern of STF in each TA were examined by immunofluorescence microscopy using the monoclonal antibodies (mAb) ALD‐19 and ALD‐58 which react with the slow tonic myosin heavy chain (MyHC) isoform. In addition, TA muscle samples from adjacent frozen sections were also examined for slow tonic MyHC isoform by electrophoretic immunoblotting. STF were detected in all nine TAs and the presence of slow tonic MyHC isoform was confirmed in the immunoblots. The STF were distributed predominantly in the medial aspect of the TA, a distinct muscle compartment called the vocalis which is the vibrating part of the vocal fold. STF do not contract with a twitch like most muscle fibers, instead, their contractions are prolonged, stable, precisely controlled, and fatigue resistant. The human voice is characterized by a stable sound with a wide frequency spectrum that can be precisely modulated and the STF may contribute to this ability. At present, the evidence suggests that STF are not presented in the vocal folds of other mammals (including other primates), therefore STF may be a unique human specialization for speech. Anat Rec 256:146–157, 1999.


The FASEB Journal | 2010

Control of oxidative phosphorylation by vitamin A illuminates a fundamental role in mitochondrial energy homoeostasis

Rebeca Acín-Pérez; Beatrice Hoyos; Feng Zhao; Valerie Vinogradov; Donald A. Fischman; Robert A. Harris; Michael Leitges; Nuttaporn Wongsiriroj; William S. Blaner; Giovanni Manfredi; Ulrich Hämmerling

The physiology of two metabolites of vitamin A is understood in substantial detail: retinaldehyde functions as the universal chromophore in the vertebrate and invertebrate eye;retinoic acid regulates a set of vertebrate transcription factors, the retinoic acid receptor superfamily. The third member of this retinoid triumvirate is retinol. While functioning as the precursor of retinaldehyde and retinoic acid, a growing body of evidence suggests a far more fundamental role for retinol in signal transduction. Here we show that retinol is essential for the metabolic fitness of mitochondria. When cells were deprived of retinol, respiration and ATP synthesis defaulted to basal levels. They recovered to significantly higher energy output as soon as retinol was restored to physiological concentration, without the need for metabolic conversion to other retinoids. Retinol emerged as an essential cofactor of protein kinase Cδ (PKCδ), without which this enzyme failed to be activated in mitochondria. Furthermore, retinol needed to physically bind PKCδ, because mutation of the retinol binding site rendered PKCδ unresponsive to Rol, while retaining responsiveness to phorbol ester. The PKCδ/retinol complex signaled the pyruvate dehydrogenase complex for enhanced flux of pyruvate into the Krebs cycle. The baseline response was reduced in vitamin A‐deficient lecithin:retinol acyl transferase‐knockout mice, but this was corrected within 3h by intraperitoneal injection of vitamin A; this suggests that vitamin A is physiologically important. These results illuminate a hitherto unsuspected role of vitamin A in mitochondrial bioenergetics of mammals, acting as a nutritional sensor. As such, retinol is of fundamental importance for energy homeostasis. The data provide a mechanistic explanation to the nearly 100‐yr‐old question of why vitamin A deficiency causes so many pathologies that are independent of retinoic acid action.—Acin‐Perez, T., Hoyos, B., Zhao, F., Vinogradov, V., Fischman, D. A., Harris, R. A., Leitges, M., Wongsiriroj, N., Blaner, W. S., Manfredi, G., Hammerling, U. Control of oxidative phosphorylation by vitamin A illuminates a fundamental role in mitochondrial energy homoeostasis. FASEB J. 24, 627–636 (2010). www.fasebj.org


The FASEB Journal | 2008

Vitamin A depletion causes oxidative stress, mitochondrial dysfunction, and PARP-1-dependent energy deprivation

Haw-Jyh Chiu; Donald A. Fischman; Ulrich Hämmerling

A significant unresolved question is how vitamin A deprivation causes, and why retinoic acid fails to reverse, immunodeficiency. When depleted of vitamin A, T cells undergo programmed cell death (PCD), which is enhanced by the natural competitor of retinol, anhydroretinol. PCD does not happen by apoptosis, despite the occurrence of shared early events, including mitochondrial membrane depolarization, permeability transition pore opening, and cytochrome c release. It also lacks caspase‐3 activation, chromatin condensation, and endonuclease‐mediated DNA degradation, hallmarks of apoptosis. PCD following vitamin Adeprivation exhibits increased production of reactive oxygen species (ROS), drastic reductions in ATP and NAD+ levels, and activation of poly‐(ADP‐ribose) polymerase (PARP) ‐1. These latter steps are causative because neutralizing ROS, imposing hypoxic conditions, or inhibiting PARP‐1 by genetic or pharmacologic approaches prevents energy depletion and PCD. The data highlight a novel regulatory role of vitamin A in mitochondrial energy homeostasis.— Chiu, H.‐J., Fischman, D. A., Hammerling, U. Vitamin A depletion causes oxidative stress, mitochondrial dysfunction, and PARP‐1‐dependent energy deprivation. FASEB J. 22, 3878–3887 (2008)


Journal of Muscle Research and Cell Motility | 1999

The interface between MyBP-C and myosin: site-directed mutagenesis of the CX myosin-binding domain of MyBP-C

C. A. Miyamoto; Donald A. Fischman; F. C. Reinach

Myosin-binding protein-C (MyBP-C or C-protein) is a ca. 130 kDa protein present in the thick filaments of all vertebrate striated muscle. The protein contains ten domains, each of ca. 90–100 amino acids; seven are members of the IgI family of proteins, three of the fibronectin type III family. The motifs are arranged in the following order (from N- to C-terminus): Ig-Ig-Ig-Ig-Ig-Fn-Fn-Ig-Fn-Ig. The C-terminal Ig motif (domain X or CX) contains its light meromyosin-binding site. A recombinant form of CX, beginning at Met-1027, exhibits saturable binding to myosin with an affinity comparable to the C-terminal 13 kDa chymotryptic fragment of native MyBP-C. To identify the surface in CX involved in its interaction with myosin, nine site-directed mutants (R37E, K43E, N49D, E52R, D56K, R73E, R74E, G80D and R103E) were constructed. Using a new assay for assessing the binding of CX with the light meromyosin (LMM) portion of myosin, we demonstrate that recombinant CX, just as the full-length protein, is able to facilitate LMM polymerization. Moreover, we show that residues Arg-37, Glu-52, Asp-56, Arg-73, and Arg-74 are involved in this interaction with the myosin rod. All of these amino acids interact with negatively charged residues of LMM, since the mutants R37E, R73E and R74E are unable to bind myosin, whereas E52R and D56K bind myosin with higher affinity than wild-type CX. Residues Lys-43 and Arg-103 show a small but significant influence on the binding reaction; residues Asn-49 and Gly-80 seem not to be involved in this interaction. Based on these data, a model is proposed for the interaction between MyBP-C CX and myosin filaments. In this model, CX interacts with four molecules of LMM at four different sites of the binding protein, thus explaining the effects of MyBP-C on the critical concentration of myosin polymerization.


The FASEB Journal | 2010

Regulation of intermediary metabolism by the PKCδ signalosome in mitochondria

Rebeca Acín-Pérez; Beatrice Hoyos; Jianli Gong; Valerie Vinogradov; Donald A. Fischman; Michael Leitges; Babak Borhan; Anatoly A. Starkov; Giovanni Manfredi; Ulrich Hämmerling

PKCδ has emerged as a novel regulatory molecule of oxidative phosphorylation by targeting the pyruvate dehydrogenase complex (PDHC). We showed that activation of PKCδ leads to the dephosphorylation of pyruvate dehydrogenase kinase 2 (PDK2), thereby decreasing PDK2 activity and increasing PDH activity, accelerating oxygen consumption, and augmenting ATP synthesis. However, the molecular components that mediate PKCδ signaling in mitochondria have remained elusive so far. Here, we identify for the first time a functional complex, which includes cytochrome c as the upstream driver of PKCδ, and uses the adapter protein p66Shc as a platform with vitamin A (retinol) as a fourth partner. All four components are necessary for the activation of the PKCδ signal chain. Genetic ablation of any one of the three proteins, or retinol depletion, silences signaling. Furthermore, mutations that disrupt the interaction of cytochrome c with p66Shc, of p66Shc with PKCδ, or the deletion of the retinol-binding pocket on PKCδ, attenuate signaling. In cytochrome c-deficient cells, reintroduction of cytochrome c Fe(3+) protein restores PKCδ signaling. Taken together, these results indicate that oxidation of PKCδ is key to the activation of the pathway. The PKCδ/p66Shc/cytochrome c signalosome might have evolved to effect site-directed oxidation of zinc-finger structures of PKCδ, which harbor the activation centers and the vitamin A binding sites. Our findings define the molecular mechanisms underlying the signaling function of PKCδ in mitochondria.

Collaboration


Dive into the Donald A. Fischman's collaboration.

Top Co-Authors

Avatar

Takashi Mikawa

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James E. Dennis

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulrich Hämmerling

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatrice Hoyos

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge