Donald D. DeBlieux
Utah Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Donald D. DeBlieux.
Nature | 2005
James I. Kirkland; Lindsay E. Zanno; Scott D. Sampson; James M. Clark; Donald D. DeBlieux
Therizinosauroids are an enigmatic group of dinosaurs known mostly from the Cretaceous period of Asia, whose derived members are characterized by elongate necks, laterally expanded pelves, small, leaf-shaped teeth, edentulous rostra and mandibular symphyses that probably bore keratinized beaks. Although more than a dozen therizinosauroid taxa are known, their relationships within Dinosauria have remained controversial because of fragmentary remains and an unusual suite of characters. The recently discovered ‘feathered’ therizinosauroid Beipiaosaurus from the Early Cretaceous of China helped to clarify the theropod affinities of the group. However, Beipiaosaurus is also poorly represented. Here we describe a new, primitive therizinosauroid from an extensive paucispecific bonebed at the base of the Cedar Mountain Formation (Early Cretaceous) of east-central Utah. This new taxon represents the most complete and most basal therizinosauroid yet discovered. Phylogenetic analysis of coelurosaurian theropods incorporating this taxon places it at the base of the clade Therizinosauroiden, indicating that this species documents the earliest known stage in the poorly understood transition from carnivory to herbivory within Therizinosauroidea. The taxon provides the first documentation, to our knowledge, of therizinosauroids in North America during the Early Cretaceous.
PLOS ONE | 2010
Andrew T. McDonald; James I. Kirkland; Donald D. DeBlieux; Scott K. Madsen; Jennifer Cavin; Andrew R. C. Milner; Lukas Panzarin
Background Basal iguanodontian dinosaurs were extremely successful animals, found in great abundance and diversity almost worldwide during the Early Cretaceous. In contrast to Europe and Asia, the North American record of Early Cretaceous basal iguanodonts has until recently been limited largely to skulls and skeletons of Tenontosaurus tilletti. Methodology/Principal Findings Herein we describe two new basal iguanodonts from the Yellow Cat Member of the Cedar Mountain Formation of eastern Utah, each known from a partial skull and skeleton. Iguanacolossus fortis gen. et sp. nov. and Hippodraco scutodens gen. et sp. nov. are each diagnosed by a single autapomorphy and a unique combination of characters. Conclusions/Significance Iguanacolossus and Hippodraco add greatly to our knowledge of North American basal iguanodonts and prompt a new comprehensive phylogenetic analysis of basal iguanodont relationships. This analysis indicates that North American Early Cretaceous basal iguanodonts are more basal than their contemporaries in Europe and Asia.
PLOS ONE | 2012
Philip J Senter; James L Kirkland; Donald D. DeBlieux; Scott K. Madsen; Natalie Toth
Background The Yellow Cat Member of the Cedar Mountain Formation (Early Cretaceous, Barremian? – Aptian) of Utah has yielded a rich theropod fauna, including the coelurosaur Nedcolbertia justinhofmanni, the therizinosauroid Falcarius utahensis, the troodontid Geminiraptor suarezarum, and the dromaeosaurid Utahraptor ostrommaysorum. Recent excavation has uncovered three new dromaeosaurid specimens. One specimen, which we designate the holotype of the new genus and species Yurgovuchia doellingi, is represented by a partial axial skeleton and a partial left pubis. A second specimen consists of a right pubis and a possibly associated radius. The third specimen consists of a tail skeleton that is unique among known Cedar Mountain dromaeosaurids. Methodology/Principal Findings Y. doellingi resembles Utahraptor ostrommaysorum in that its caudal prezygapophyses are elongated but not to the degree present in most dromaeosaurids. The specimen represented by the right pubis exhibits a pronounced pubic tubercle, a velociraptorine trait that is absent in Y. doellingi. The specimen represented by the tail skeleton exhibits the extreme elongation of the caudal prezygapophyses that is typical of most dromaeosaurids. Here we perform a phylogenetic analysis to determine the phylogenetic position of Y. doellingi. Using the resulting phylogeny as a framework, we trace changes in character states of the tail across Coelurosauria to elucidate the evolution of the dromaeosaurid tail. Conclusions/Significance The new specimens add to the known diversity of Dromaeosauridae and to the known diversity within the Yellow Cat paleofauna. Phylogenetic analysis places Y. doellingi in a clade with Utahraptor, Achillobator, and Dromaeosaurus. Character state distribution indicates that the presence of intermediate-length caudal prezygapophyses in that clade is not an evolutionarily precursor to extreme prezygapophyseal elongation but represents a secondary shortening of caudal prezygapophyses. It appears to represent part of a trend within Dromaeosauridae that couples an increase in tail flexibility with increasing size.
Journal of Vertebrate Paleontology | 2011
David K. Smith; Lindsay E. Zanno; R. Kent Sanders; Donald D. DeBlieux; James I. Kirkland
ABSTRACT Many disarticulated bones from multiple individuals of a primitive therizinosaurian, referred to Falcarius utahensis, were found in the paucispecific Crystal Geyser bonebed in the Lower Cretaceous Cedar Mountain Formation of eastern Utah. To date, more than 2000 specimens from this species have been excavated. Included in this collection are two partial braincases, one of which is designated the holotype. Here we describe the braincase morphology of Falcarius utahensis. These specimens help establish the primitive cranial condition for the Therizinosauria and further substantiate intraspecific and contralateral braincase pneumatic variation in theropods. When combined with new observations on the cranial remains of the therizinosaurid Nothronychus mckinleyi derived from computed tomographic (CT) scans, the braincase morphology of Falcarius clarifies several evolutionary trends within the Therizinosauria and establishes a suite of synapomorphies for the Therizinosauridae. Trends within the clade include increased basicranial pneumatization (the development of a basisphenoid bulla and loss of external subcondylar recesses), anterior deflection of the supraoccipital, and the reduction of points of origin of the craniocervical musculature, associated with the loss of discrete basipterygoid processes, probably due to incorporation of these structures into the expanded hyperpneumatic bone. Finally, CT scans reveal a complete, nearly avian, inner ear with bird-like semicircular canals and a long cochlea indicating broad frequency discrimination.
PLOS ONE | 2012
Phil Senter; James I. Kirkland; Donald D. DeBlieux
Background The Yellow Cat Member of the Cedar Mountain Formation (Early Cretaceous, Barremian?) of Utah has yielded a rich dinosaur fauna, including the basal therizinosauroid theropod Falcarius utahensis at its base. Recent excavation uncovered a new possible therizinosauroid taxon from a higher stratigraphic level in the Cedar Mountain Formation than F. utahensis. Methodology/Principal Findings Here we describe a fragmentary skeleton of the new theropod and perform a phylogenetic analysis to determine its phylogenetic position. The skeleton includes fragments of vertebrae, a scapula, forelimb and hindlimb bones, and an ischium. It also includes several well-preserved manual unguals. Manual and pedal morphology show that the specimen is distinct from other theropods from the Cedar Mountain Formation and from previously described therizinosauroids. It is here named as the holotype of a new genus and species, Martharaptor greenriverensis. Phylogenetic analysis places M. greenriverensis within Therizinosauroidea as the sister taxon to Alxasaurus + Therizinosauridae, although support for this placement is weak. Conclusions/Significance The new specimen adds to the known dinosaurian fauna of the Yellow Cat Member of the Cedar Mountain Formation. If the phylogenetic placement is correct, it also adds to the known diversity of Therizinosauroidea.
Scientific Reports | 2017
Rafael Royo-Torres; Paul Upchurch; James I. Kirkland; Donald D. DeBlieux; John R. Foster; Alberto Cobos; Luis Alcalá
A new, largely complete eusauropod dinosaur with cranial and postcranial elements from two skeletons, Mierasaurus bobyoungi gen. nov., sp. nov. from the lower Yellow Cat Member (Early Cretaceous) of Utah (USA), is the first recognized member of Turiasauria from North America. Moreover, according to our phylogenetic results, Moabosaurus utahensis from the lower Yellow Cat Member of Utah (USA) is also a member of this clade. This group of non-neosauropod eusauropods, which now includes five genera (Losillasaurus, Turiasaurus, Mierasaurus, Moabosaurus and Zby), was previously known only from the Jurassic of Europe. These recent discoveries in Utah suggest that turiasaurs as a lineage survived the Jurassic-Cretaceous extinction boundary and expanded their known range, at least, into western North America. The revised spatiotemporal distribution of turiasaurs is consistent with the presence of a land connection between North America and Europe sometime during the late Tithonian to Valanginian (c.147-133 Ma). Mierasaurus and Moabosaurus are the only non-neosauropod eusauropods known from North America, despite being younger than the classic neosauropods of the Morrison Formation (c.150 Ma).
PALAIOS | 2016
James I. Kirkland; Edward L. Simpson; Donald D. DeBlieux; Scott K. Madsen; Emily Bogner; Neil E. Tibert
Abstract: A new mass death assemblage in Lower Cretaceous strata of east-central Utah contains well-preserved skeletons representing an ontogenetic series of individuals of Utahraptor, and at minimum two iguanodont grade ornithischian skeletons. The dinosaurs were entombed in ovoid-lensoidal, fine-grained sandstone sills linked by sandstone pipes and/or dikes and another basal lensoidal mass with scattered and broken iguanodont and sauropod bones and to an underlying gravelly sandstone bed. Exposed in the excavation high-walls are syndepositional normal-faults bounding graded ripple strata. Multiphased fluid over-pressurization in an artesian setting creating the structures. Trapping, killing, and subsequent burial mechanism was generated by variations of pressure in a localized artesian spring system that breached the surface and is the first such mechanism documented with numerous dinosaur victims.
Archive | 2013
Terry A. Gates; Eric K. Lund; Clint A. Boyd; Donald D. DeBlieux; Alan L. Titus; David C. Evans; Michael A. Getty; James I. Kirkland; Jeffrey G. Eaton
Palaeogeography, Palaeoclimatology, Palaeoecology | 2015
Martin G. Lockley; Lisa G. Buckley; John R. Foster; James I. Kirkland; Donald D. DeBlieux
Archive | 2006
James I. Kirkland; Donald D. DeBlieux; Martha Hayden; Grant Willis