Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald Drake is active.

Publication


Featured researches published by Donald Drake.


ACS Nano | 2009

Exposure to titanium dioxide nanomaterials provokes inflammation of an in vitro human immune construct.

Brian Schanen; Ajay S. Karakoti; Sudipta Seal; Donald Drake; William L. Warren; William T. Self

Nanoparticle technology is undergoing significant expansion largely because of the potential of nanoparticles as biomaterials, drug delivery vehicles, cancer therapeutics, and immunopotentiators. Incorporation of nanoparticle technologies for in vivo applications increases the urgency to characterize nanomaterial immunogenicity. This study explores titanium dioxide, one of the most widely manufactured nanomaterials, synthesized into its three most common nanoarchitectures: anatase (7-10 nm), rutile (15-20 nm), and nanotube (10-15 nm diameters, 70-150 nm length). The fully human autologous MIMIC immunological construct has been utilized as a predictive, nonanimal alternative to diagnose nanoparticle immunogenicity. Cumulatively, treatment with titanium dioxide nanoparticles in the MIMIC system led to elevated levels of proinflammatory cytokines and increased maturation and expression of costimulatory molecules on dendritic cells. Additionally, these treatments effectively primed activation and proliferation of naive CD4(+) T cells in comparison to dendritic cells treated with micrometer-sized (>1 microm) titanium dioxide, characteristic of an in vivo inflammatory response.


Vaccine | 2011

Coupling sensitive in vitro and in silico techniques to assess cross-reactive CD4+ T cells against the swine-origin H1N1 influenza virus

Brian Schanen; Anne S. De Groot; Leonard Moise; Matt Ardito; Elizabeth McClaine; William Martin; Vaughan Wittman; William L. Warren; Donald Drake

The outbreak of the novel swine-origin H1N1 influenza in the spring of 2009 took epidemiologists, immunologists, and vaccinologists by surprise and galvanized a massive worldwide effort to produce millions of vaccine doses to protect against this single virus strain. Of particular concern was the apparent lack of pre-existing antibody capable of eliciting cross-protective immunity against this novel virus, which fueled fears this strain would trigger a particularly far-reaching and lethal pandemic. Given that disease caused by the swine-origin virus was far less severe than expected, we hypothesized cellular immunity to cross-conserved T cell epitopes might have played a significant role in protecting against the pandemic H1N1 in the absence of cross-reactive humoral immunity. In a published study, we used an immunoinformatics approach to predict a number of CD4(+) T cell epitopes are conserved between the 2008-2009 seasonal H1N1 vaccine strain and pandemic H1N1 (A/California/04/2009) hemagglutinin proteins. Here, we provide results from biological studies using PBMCs from human donors not exposed to the pandemic virus to demonstrate that pre-existing CD4(+) T cells can elicit cross-reactive effector responses against the pandemic H1N1 virus. As well, we show our computational tools were 80-90% accurate in predicting CD4(+) T cell epitopes and their HLA-DRB1-dependent response profiles in donors that were chosen at random for HLA haplotype. Combined, these results confirm the power of coupling immunoinformatics to define broadly reactive CD4(+) T cell epitopes with highly sensitive in vitro biological assays to verify these in silico predictions as a means to understand human cellular immunity, including cross-protective responses, and to define CD4(+) T cell epitopes for potential vaccination efforts against future influenza viruses and other pathogens.


PLOS ONE | 2013

Immunomodulation and T Helper TH1/TH2 Response Polarization by CeO2 and TiO2 Nanoparticles

Brian Schanen; Soumen Das; Christopher M. Reilly; William L. Warren; William T. Self; Sudipta Seal; Donald Drake

Immunomodulation by nanoparticles, especially as related to the biochemical properties of these unique materials, has scarcely been explored. In an in vitro model of human immunity, we demonstrate two catalytic nanoparticles, TiO2 (oxidant) and CeO2 (antioxidant), have nearly opposite effects on human dendritic cells and T helper (TH) cells. For example, whereas TiO2 nanoparticles potentiated DC maturation that led towards TH1-biased responses, treatment with antioxidant CeO2 nanoparticles induced APCs to secrete the anti-inflammatory cytokine, IL-10, and induce a TH2-dominated T cell profile. In subsequent studies, we demonstrate these results are likely explained by the disparate capacities of the nanoparticles to modulate ROS, since TiO2, but not CeO2 NPs, induced inflammatory responses through an ROS/inflammasome/IL-1β pathway. This novel capacity of metallic NPs to regulate innate and adaptive immunity in profoundly different directions via their ability to modulate dendritic cell function has strong implications for human health since unintentional exposure to these materials is common in modern societies.


Journal of Immunological Methods | 2008

A novel approach for the generation of human dendritic cells from blood monocytes in the absence of exogenous factors.

Brian Schanen; Donald Drake

Human dendritic cells (DCs) for research and clinical applications are typically derived from purified blood monocytes that are cultured in a cocktail of cytokines for a week or more. Because it has been suggested that these cytokine-derived DCs may be deficient in some important immunological functions and might not accurately represent antigen presenting cell (APC) populations found under normal conditions in vivo, there is an interest in developing methods that permit the derivation of DCs in a more physiologically relevant manner in vitro. Here, we describe a simple and reliable technique for generating large numbers of highly purified DCs that is based on a one-way migration of blood monocytes through a layer of human umbilical vein endothelial cells (HUVECs) that are cultured to confluency in the upper chamber of a Transwell device. The resultant APCs, harvested from the lower Transwell chamber, resemble other cultured DC populations in their expression of major histocompatibility (MHC) and costimulatory molecules, ability to phagocytose protein antigens and capacity to trigger primary antigen-specific T cell responses. This technique offers several advantages over the standard method of in vitro cytokine-driven DC development, including: (1) the rapidity of this approach, as DC differentiation occurs in only 2 days, (2) the differentiation process itself, which is more akin to the development of DCs under physiologic conditions and (3) the cost-effectiveness of the system, since no monocyte pre-selection is required and DC development occurs in the absence of expensive recombinant cytokines.


Clinical and Applied Thrombosis-Hemostasis | 2015

Evaluation of Immunostimulatory Potential of Branded and US-Generic Enoxaparins in an In Vitro Human Immune System Model

Ernesto Luna; Pankaj Agrawal; Riyaz Mehta; Charlotte Vernhes; Christian Viskov; Jean Amiral; William L. Warren; Donald Drake

Low-molecular-weight heparins (LMWHs) have several positive therapeutic effects and can also form immunostimulatory complexes with plasma proteins, such as platelet factor 4 (PF4). We compared the innate response and functional profiles of branded and US-generic enoxaparins from 2 manufacturers in either native or PF4-bound forms in an in vitro model of human immunity. In an analysis of 2 product lots from each manufacturer and multiple separate batches of protein–heparin complexes, branded enoxaparin was shown to be consistently nonstimulatory for innate responses, whereas US-generic enoxaparins generated variable immunostimulatory profiles depending on the enoxaparin lot used to prepare the PF4–LMWH complexes. Production of tissue factor pathway inhibitor (TFPI), a physiologic heparin-induced inhibitor of tissue factor-induced coagulation that was used as a functional readout of biological activity of enoxaparins in these assays, was heightened in the presence of branded enoxaparin complexes, but its levels were variable in cultures treated with complexes containing US-generic enoxaparins. Analytical analyses suggest that the heightened immunostimulatory potential of some of the US-generic enoxaparin product lots could be tied to their capacity to form ultra-large and/or more stable complexes with PF4 than the other LMWHs included in this study. Although these distinct biological and analytical profiles might be related to the composition and/or consistency of branded and US-generic enoxaparins included in our data set, further studies are warranted to elucidate the pathophysiological relevance of these in vitro findings.


Vaccine | 2017

The in vitro MIMIC® platform reflects age-associated changes in immunological responses after influenza vaccination

Allison Dauner; Pankaj Agrawal; Jose Salvatico; Tenekua Tapia; Vipra Dhir; S. Farzana Shaik; Donald Drake; Anthony M. Byers

Increasing research and development costs coupled with growing concerns over healthcare expenditures necessitate the generation of pre-clinical testing models better able to predict the efficacy of vaccines, drugs and biologics. An ideal system for evaluating vaccine immunogenicity will not only be reliable but also physiologically relevant, able to be influenced by immunomodulatory characteristics such as age or previous exposure to pathogens. We have previously described a fully autologous human cell-based MIMIC® (Modular IMmune In vitro Construct) platform which enables the evaluation of innate and adaptive immunity in vitro, including naïve and recall responses. Here, we establish the ability of this module to display reduced antibody production and T cell activation upon in vitro influenza vaccination of cells from elderly adults. In the MIMIC® system, we observe a 2.7-4.2-fold reduction in strain-specific IgG production to seasonal trivalent influenza vaccine (TIV) in the elderly when compared to adults, as well as an age-dependent decline in the generation of functional antibodies. A parallel decline in IgG production with increasing age was detected via short-term ex vivo stimulation of B cells after in vivo TIV vaccination in the same cohort. Using MIMIC®, we also detect a reduction in the number but not proportion of TIV-specific multifunctional CD154+IFNγ+IL-2+TNFα+ CD4+ T cells in elderly adults. Inefficient induction of multifunctional helper T cells with TIV stimulation in MIMIC® despite a normalized number of initial CD4+ T cells suggests a possible mechanism for an impaired anti-TIV IgG response in elderly adults. The ability of the MIMIC® system to recapitulate differential age-associated responses in vitro provides a dynamic platform for the testing of vaccine candidates and vaccine enhancement strategies in a fully human model including the ability to interrogate specific populations, such as elderly adults.


Cytotechnology | 2018

A novel dendritic cell-based direct ex vivo assay for detection and enumeration of circulating antigen-specific human T cells

Roberto Carrio; Ge Zhang; Donald Drake; Brian Schanen

Although a variety of assays have been used to examine T cell responses in vitro, standardized ex vivo detection of antigen-specific CD4+ T cells from human circulatory PBMCs remains constrained by low-dimensional characterization outputs and the need for polyclonal, mitogen-induced expansion methods to generate detectable response signals. To overcome these limitations, we developed a novel methodology utilizing antigen-pulsed autologous human dendritic target cells in a rapid and sensitive assay to accurately enumerate antigen-specific CD4+ T cell precursor frequency by multiparametric flow cytometry. With this approach, we demonstrate the ability to reproducibly quantitate poly-functional T cell responses following both primary and recall antigenic stimulation. Furthermore, this approach enables more comprehensive phenotypic profiling of circulating antigen-specific CD4+ T cells, providing valuable insights into the pre-existing polarization of antigen-specific T cells in humans. Combined, this approach permits sensitive and detailed ex vivo detection of antigen-specific CD4+ T cells delivering an important tool for advancing vaccine, immune-oncology and other therapeutic studies.


Archive | 2006

In vitro mucosal tissue equivalent

William L. Warren; Guzman Sanchez-Schmitz; Russell N. Higbee; Heather Fahlenkamp; Donald Drake; John G. Tew


Archive | 2007

Models for vaccine assessment

John G. Tew; Mohey Eldin El Shikh; Inderpal Singh; Eric Mishkin; Donald Drake; Haifeng Song; William L. Warren


Archive | 2006

Automatable artificial immune system (ais)

William L. Warren; Robert Parkhill; Michael N. Nguyen; Guzman Sanchez-Schmitz; Heather Fahlenkamp; Russell Higbee; Donald Drake; Anatoly Kachurin; David Moe

Collaboration


Dive into the Donald Drake's collaboration.

Top Co-Authors

Avatar

William L. Warren

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

William L. Warren

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Eric Mishkin

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Heather Fahlenkamp

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guzman Sanchez-Schmitz

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guzman Sanchez-Schmitz

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge