Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald G. Guiney is active.

Publication


Featured researches published by Donald G. Guiney.


Plasmid | 1985

Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression

Gary S. Ditta; Thomas J. Schmidhauser; Emanuel Yakobson; Peter Lu; Xiao-Wu Liang; Deborah R. Finlay; Donald G. Guiney; Donald R. Helinski

Derivatives of plasmid pRK290 that are useful for cloning and for analyzing gene expression in a wide variety of Gram-negative bacteria are described. A smaller broad host range plasmid derived from RK2, with properties similar to that of pRK290, is also described.


Nature | 2004

The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4

Li-Chung Hsu; Jin Mo Park; Kezhong Zhang; Jun-Li Luo; Shin Maeda; Randal J. Kaufman; Lars Eckmann; Donald G. Guiney; Michael Karin

Macrophages are pivotal constituents of the innate immune system, vital for recognition and elimination of microbial pathogens. Macrophages use Toll-like receptors (TLRs) to detect pathogen-associated molecular patterns—including bacterial cell wall components, such as lipopolysaccharide or lipoteichoic acid, and viral nucleic acids, such as double-stranded (ds)RNA—and in turn activate effector functions, including anti-apoptotic signalling pathways. Certain pathogens, however, such as Salmonella spp., Shigellae spp. and Yersiniae spp., use specialized virulence factors to overcome these protective responses and induce macrophage apoptosis. We found that the anthrax bacterium, Bacillus anthracis, selectively induces apoptosis of activated macrophages through its lethal toxin, which prevents activation of the anti-apoptotic p38 mitogen-activated protein kinase. We now demonstrate that macrophage apoptosis by three different bacterial pathogens depends on activation of TLR4. Dissection of anti- and pro-apoptotic signalling events triggered by TLR4 identified the dsRNA responsive protein kinase PKR as a critical mediator of pathogen-induced macrophage apoptosis. The pro-apoptotic actions of PKR are mediated both through inhibition of protein synthesis and activation of interferon response factor 3.


Molecular Microbiology | 1993

Molecular analysis of spv virulence genes of the salmonella virulence plasmids

Paul A. Gulig; Hirofumi Danbara; Donald G. Guiney; Alistair J. Lax; Françoise Norel; Mikael Rhen

Genes on an 8 kb region common to the virulence plasmids of several serovars of Salmonella are sufficient to replace the entire plasmid in enabling systemic infection in animal models. This virulence region encompasses five genes which previously have been designated with different names from each investigating laboratory. A common nomenclature has been devised for the five genes, i.e. spv for salmonella plasmid virulence. The first gene, spvR, encodes a positive activator for the following four genes, spvABCD. DNA sequence analysis of the spv genes from Salmonella typhimurium. Salmonella dublin, and Salmonella choleraesuis demonstrated extremely high conservation of the DNA and amino acid sequences. The spv genes are induced at stationary phase and in carbon‐poor media, and optimal expression is dependent on the katF locus. The cirulence functions of the spv genes are not known, but these genes may increase the growth rate of salmonellae in host cells and affect the interaction of salmonellae with the host immune system.


Journal of Clinical Investigation | 2001

Diverse virulence traits underlying different clinical outcomes of Salmonella infection

Joshua Fierer; Donald G. Guiney

Salmonella strains have evolved to infect a wide variety of reptiles, birds, and mammals resulting in many different syndromes ranging from colonization and chronic carriage to acute fatal disease. Adaptation to a large number of different evolutionary niches has undoubtedly driven the high degree of phenotypic and genotypic diversity in Salmonella strains. Differences in LPS and flagellar structure generate the antigenic variation that is reflected in the more than 2,000 known serotypes. Moreover, variations of LPS structure affect the virulence of the strain. The differential expression of various fimbriae by Salmonella is likely to be due to the wide variety of mucosal surfaces that are encountered by various strains, and the host immune response may select for a different expression pattern. As with these surface structures, a variety of other important virulence determinants show a variable distribution in Salmonella strains and also serve to delineate the divergence of the Salmonella lineage from E. coli. The acquisition of the SPI-1 region may have represented the defining genetic event in the separation of the Salmonella and E. coli lineages. The SPI-1 cell invasion function allowed Salmonella to establish a separate niche in epithelial cells. The mgtC locus on SPI-3 is also present in all lineages and facilitates the adaptation of the bacteria to the low Mg2+, low pH environment of the endosome that results from SPI-1-mediated invasion. Subsequent acquisition of SPI-2 allowed Salmonella to manipulate the sorting of the endosome or phagosome, altering the intracellular environment and facilitating bacterial growth within infected cells. The ability to disseminate from the bowel and establish extraintestinal niches is promoted by the spv locus. Since Salmonella proliferates within macrophages and must avoid phagocytosis by neutrophils to establish a systemic infection, the spv genes appear to promote the macrophage phase of the disease process. Here the polymorphism of the spv locus is clearly demonstrated, since the serovars that cause most cases of nontyphoid bacteremia contain the spv genes. The absence of the spv genes from S. typhi is particularly puzzling and is a strong indication that the pathogenesis of typhoid fever is fundamentally different from that of bacteremia due to nontyphoid Salmonella. There is currently no genetic explanation for the phenotype of host adaptation or for the finding that only a few serovars cause the majority of human infections. Based on recent findings that multiple individual virulence genes have a variable distribution in Salmonella, it is unlikely that a single locus will be found to be responsible for these complex biological traits. Instead, a complicated combination of genes are likely to contribute to the overall virulence phenotype.


Molecular Microbiology | 2001

The Salmonella spvB virulence gene encodes an enzyme that ADP‐ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells

Marc Lesnick; Neil E. Reiner; Joshua Fierer; Donald G. Guiney

ADP‐ribosylating enzymes, such as cholera and diphtheria toxins, are key virulence factors for a variety of extracellular bacterial pathogens but have not been implicated previously during intracellular pathogenesis. Salmonella strains are capable of invading epithelial cells and localizing in macrophages during infection. The spvB virulence gene of Salmonella is required for human macrophage cytotoxicity in vitro and for enhancing intracellular bacterial proliferation during infection. Here, we present evidence that spvB encodes an ADP‐ribosylating enzyme that uses actin as a substrate and depolymerizes actin filaments when expressed in CHO cells. Furthermore, site‐directed mutagenesis demonstrates that the ADP‐ribosylating activity of SpvB is essential for Salmonella virulence in mice. As spvB is expressed by Salmonella strains after invasion of epithelial cells or phagocytosis by macrophages, these results suggest that SpvB functions as an intracellular ADP‐ribosylating toxin critical for the pathogenesis of Salmonella infections.


Journal of Bacteriology | 2004

Characterization of monospecies biofilm formation by Helicobacter pylori.

Sheri P. Cole; Julia Harwood; Richard Lee; Rosemary C. She; Donald G. Guiney

As all bacteria studied to date, the gastric pathogen Helicobacter pylori has an alternate lifestyle as a biofilm. H. pylori forms biofilms on glass surfaces at the air-liquid interface in stationary or shaking batch cultures. By light microscopy, we have observed attachment of individual, spiral H. pylori to glass surfaces, followed by division to form microcolonies, merging of individual microcolonies, and growth in the third dimension. Scanning electron micrographs showed H. pylori arranged in a matrix on the glass with channels for nutrient flow, typical of other bacterial biofilms. To understand the importance of biofilms to the H. pylori life cycle, we tested the effect of mucin on biofilm formation. Our results showed that 10% mucin greatly increased the number of planktonic H. pylori while not affecting biofilm bacteria, resulting in a decline in percent adherence to the glass. This suggests that in the mucus-rich stomach, H. pylori planktonic growth is favored over biofilm formation. We also investigated the effect of specific mutations in several genes, including the quorum-sensing gene, luxS, and the cagE type IV secretion gene. Both of these mutants were found to form biofilms approximately twofold more efficiently than the wild type in both assays. These results indicate the relative importance of these genes to the production of biofilms by H. pylori and the selective enhancement of planktonic growth in the presence of gastric mucin.


Journal of Clinical Investigation | 1995

DNA repair is more important than catalase for Salmonella virulence in mice.

Nancy A. Buchmeier; Stephen J. Libby; Yisheng Xu; Peter C. Loewen; Jacek Switala; Donald G. Guiney; Ferric C. Fang

Pathogenic microorganisms possess antioxidant defense mechanisms for protection from reactive oxygen metabolites such as hydrogen peroxide (H2O2), which are generated during the respiratory burst of phagocytic cells. These defense mechanisms include enzymes such as catalase, which detoxify reactive oxygen species, and DNA repair systems which repair damage resulting from oxidative stress. To determine the relative importance of these two potentially protective defense mechanisms against oxidative stress encountered by Salmonella during infection of the host, a Salmonella typhimurium double mutant unable to produce either the HPI or HPII catalase was constructed, and compared with an isogenic recA mutant deficient in DNA repair. The recA mutant was hypersusceptible to H2O2 at low cell densities in vitro, while the catalase mutant was more susceptible to high H2O2 concentrations at high cell densities. The catalase mutant was found to be resistant to macrophages and retained full murine virulence, in contrast to the recA mutant which previously was shown to be macrophage-sensitive and attenuated in mice. These observations suggest that Salmonella is subjected to low concentrations of H2O2 while at relatively low cell density during infection, conditions requiring an intact DNA repair system but not functional catalase activity.


Cellular Microbiology | 2000

The Salmonella virulence plasmid spv genes are required for cytopathology in human monocyte-derived macrophages

Stephen J. Libby; Marc Lesnick; Patricia Hasegawa; Elaine Weidenhammer; Donald G. Guiney

The pathogenesis of serious systemic Salmonella infections is characterized by survival and proliferation of bacteria inside macrophages. Infection of human monocyte‐derived macrophages in vitro with S. typhimurium or S. dublin produces cytopathology characterized by detachment of cells that contain large numbers of proliferating bacteria. This cytopathology is dependent on the expression of the bacterial spv genes, a virulence locus previously shown to markedly enhance the ability of Salmonella to produce systemic disease. After 24 h of infection, macrophage cultures contain two populations of bacteria: (i) proliferating organisms present in a detached cell fraction; and (ii) a static bacterial population in macrophages remaining attached to the culture well. Mutations in either the essential transcriptional activator SpvR or the key SpvB protein markedly reduce the cytopathic effect of Salmonella infection. The spv‐dependent cytopathology in macrophages exhibits characteristics of apoptosis, with release of nucleosomes into the cytoplasm, nuclear condensation and DNA fragmentation. The current findings suggest that the mechanism of the spv effect is through induction of increased cytopathology in host macrophages.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Mucosal adjuvant activity of cholera toxin requires Th17 cells and protects against inhalation anthrax

Sandip K. Datta; Mojgan Sabet; Kim Phung Nguyen; Patricia A. Valdez; José M. González-Navajas; Shamima Islam; Ivan Mihajlov; Joshua Fierer; Paul A. Insel; Nicholas J. G. Webster; Donald G. Guiney; Eyal Raz

Cholera toxin (CT) elicits a mucosal immune response in mice when used as a vaccine adjuvant. The mechanisms by which CT exerts its adjuvant effects are incompletely understood. We show that protection against inhalation anthrax by an irradiated spore vaccine depends on CT-mediated induction of IL-17-producing CD4 Th17 cells. Furthermore, IL-17 is involved in the induction of serum and mucosal antibody responses by CT. Th17 cells induced by CT have a unique cytokine profile compared with those induced by IL-6 and TGF-β, and their induction by CT requires cAMP-dependent secretion of IL-1β and β-calcitonin gene-related peptide by dendritic cells. These findings demonstrate that Th17 cells mediate mucosal adjuvant effects of CT and identify previously unexplored pathways involved in Th17 induction that could be targeted for development of unique mucosal adjuvants.


Journal of Immunology | 2008

Salmonella Secreted Factor L Deubiquitinase of Salmonella typhimurium Inhibits NF-κB, Suppresses IκBα Ubiquitination and Modulates Innate Immune Responses

Gaëlle Le Negrate; Benjamin Faustin; Kate Welsh; Markus Loeffler; Maryla Krajewska; Patty Hasegawa; Sohini Mukherjee; Kim Orth; Stan Krajewski; Adam Godzik; Donald G. Guiney; John C. Reed

Salmonella enterica translocates virulent factors into host cells using type III secretion systems to promote host colonization, intracellular bacterial replication and survival, and disease pathogenesis. Among many effectors, the type III secretion system encoded in Salmonella pathogenicity island 2 translocates a Salmonella-specific protein, designated Salmonella secreted factor L (SseL), a putative virulence factor possessing deubiquitinase activity. In this study, we attempt to elucidate the mechanism and the function of SseL in vitro, in primary host macrophages and in vivo in infected mice. Expression of SseL in mammalian cells suppresses NF-κB activation downstream of IκBα kinases and impairs IκBα ubiquitination and degradation, but not IκBα phosphorylation. Disruption of the gene encoding SseL in S. enterica serovar typhimurium increases IκBα degradation and ubiquitination, as well as NF-κB activation in infected macrophages, compared with wild-type bacteria. Mice infected with SseL-deficient bacteria mount stronger inflammatory responses, associated with increased production of NF-κB-dependent cytokines. Thus, SseL represents one of the first bacterial deubiquitinases demonstrated to modulate the host inflammatory response in vivo.

Collaboration


Dive into the Donald G. Guiney's collaboration.

Top Co-Authors

Avatar

Joshua Fierer

University of California

View shared research outputs
Top Co-Authors

Avatar

Mojgan Sabet

University of California

View shared research outputs
Top Co-Authors

Avatar

Ferric C. Fang

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Krause

University of California

View shared research outputs
Top Co-Authors

Avatar

Sharon Okamoto

University of California

View shared research outputs
Top Co-Authors

Avatar

Sheri P. Cole

University of California

View shared research outputs
Top Co-Authors

Avatar

Julia Harwood

University of California

View shared research outputs
Top Co-Authors

Avatar

Marc Lesnick

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge