Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald G. Welsh is active.

Publication


Featured researches published by Donald G. Welsh.


American Journal of Physiology-heart and Circulatory Physiology | 1998

Endothelial and smooth muscle cell conduction in arterioles controlling blood flow

Donald G. Welsh; Steven S. Segal

We performed intracellular recording with Lucifer yellow dye microinjection to investigate the cellular pathway(s) by which constriction and dilation are conducted along the wall of arterioles (diameter 47 ± 1 μm, n = 63) supplying blood flow to the cheek pouch of anesthetized hamsters. At rest, membrane potential ( E m) of endothelial (-36 ± 1 mV) and smooth muscle (-35 ± 1 mV) cells was not different. Micropipette delivery of norepinephrine (NE) or phenylephrine (PE) produced smooth muscle cell depolarization (5-41 mV) and vasoconstriction (7-49 μm) at the site of release and along the arteriole with no effect on E m of endothelial cells. KCl produced conduction of depolarization and vasoconstriction with similar electrical kinetics in endothelial and smooth muscle cells. Acetylcholine triggered conduction of vasodilation (2-25 μm) and hyperpolarization (3-33 mV) along both cell layers; in smooth muscle, this change in E m was prolonged and followed by a transient depolarization. These cell-specific electrophysiological recordings uniquely illustrate that depolarization and constriction are initiated and conducted along smooth muscle, independent of the endothelium. Furthermore, conduction of vasodilation is explained by the spread of hyperpolarization along homologously coupled endothelial and smooth muscle cells, with distinctive responses between cell layers. The discontinuity between endothelium and smooth muscle indicates that these respective pathways are not electrically coupled during blood flow control.We performed intracellular recording with Lucifer yellow dye microinjection to investigate the cellular pathway(s) by which constriction and dilation are conducted along the wall of arterioles (diameter 47 +/- 1 microns, n = 63) supplying blood flow to the cheek pouch of anesthetized hamsters. At rest, membrane potential (Em) of endothelial (-36 +/- 1 mV) and smooth muscle (-35 +/- 1 mV) cells was not different. Micropipette delivery of norepinephrine (NE) or phenylephrine (PE) produced smooth muscle cell depolarization (5-41 mV) and vasoconstriction (7-49 microns) at the site of release and along the arteriole with no effect on Em of endothelial cells. KCl produced conduction of depolarization and vasoconstriction with similar electrical kinetics in endothelial and smooth muscle cells. Acetylcholine triggered conduction of vasodilation (2-25 microns) and hyperpolarization (3-33 mV) along both cell layers; in smooth muscle, this change in Em was prolonged and followed by a transient depolarization. These cell-specific electrophysiological recordings uniquely illustrate that depolarization and constriction are initiated and conducted along smooth muscle, independent of the endothelium. Furthermore, conduction of vasodilation is explained by the spread of hyperpolarization along homologously coupled endothelial and smooth muscle cells, with distinctive responses between cell layers. The discontinuity between endothelium and smooth muscle indicates that these respective pathways are not electrically coupled during blood flow control.


Clinical and Experimental Pharmacology and Physiology | 2009

WHAT'S WHERE AND WHY AT A VASCULAR MYOENDOTHELIAL MICRODOMAIN SIGNALLING COMPLEX

Shaun L. Sandow; Rebecca E. Haddock; Caryl E. Hill; Preet S. Chadha; Paul M. Kerr; Donald G. Welsh; Frances Plane

1 Modulation of vascular cell calcium is critical for the control of vascular tone, blood flow and pressure. 2 Specialized microdomain signalling sites associated with calcium modulation are present in vascular smooth muscle cells, where spatially localized channels and calcium store receptors interact functionally. Anatomical studies suggest that such sites are also present in endothelial cells. 3 The characteristics of these sites near heterocellular myoendothelial gap junctions (MEGJs) are described, focusing on rat mesenteric artery. The MEGJs enable current and small molecule transfer to coordinate arterial function and are thus critical for endothelium‐derived hyperpolarization, regulation of smooth muscle cell diameter in response to contractile stimuli and vasomotor conduction over distance. 4 Although MEGJs occur on endothelial cell projections within internal elastic lamina (IEL) holes, not all IEL holes have MEGJ‐related projections (approximately 0–50% of such holes have MEGJ‐related projections, with variations occurring within and between vessels, species, strains and disease). 5 In rat mesenteric, saphenous and caudal cerebellar artery and hamster cheek pouch arteriole, but not rat middle cerebral artery or cremaster arteriole, intermediate conductance calcium‐activated potassium channels (IKCa) localize to endothelial cell projections. 6 Rat mesenteric artery MEGJ connexins and IKCa are in close spatial association with endothelial cell inositol 1,4,5‐trisphosphate receptors and endoplasmic reticulum. 7 Data suggest a relationship between spatially associated endothelial cell ion channels and calcium stores in modulation of calcium release and action. Differences in spatial relationships between ion channels and calcium stores in different vessels reflect heterogeneity in vasomotor function, representing a selective target for the control of endothelial and vascular function.


American Journal of Physiology-cell Physiology | 2012

Endothelial Ca2+ wavelets and the induction of myoendothelial feedback

Cam Ha T. Tran; Mark S. Taylor; Frances Plane; Sridevi Nagaraja; Nikolaos M. Tsoukias; Viktoryiya Solodushko; Edward J. Vigmond; Tobias Fürstenhaupt; Mathew Brigdan; Donald G. Welsh

When arteries constrict to agonists, the endothelium inversely responds, attenuating the initial vasomotor response. The basis of this feedback mechanism remains uncertain, although past studies suggest a key role for myoendothelial communication in the signaling process. The present study examined whether second messenger flux through myoendothelial gap junctions initiates a negative-feedback response in hamster retractor muscle feed arteries. We specifically hypothesized that when agonists elicit depolarization and a rise in second messenger concentration, inositol trisphosphate (IP(3)) flux activates a discrete pool of IP(3) receptors (IP(3)Rs), elicits localized endothelial Ca(2+) transients, and activates downstream effectors to moderate constriction. With use of integrated experimental techniques, this study provided three sets of supporting observations. Beginning at the functional level, we showed that blocking intermediate-conductance Ca(2+)-activated K(+) channels (IK) and Ca(2+) mobilization from the endoplasmic reticulum (ER) enhanced the contractile/electrical responsiveness of feed arteries to phenylephrine. Next, structural analysis confirmed that endothelial projections make contact with the overlying smooth muscle. These projections retained membranous ER networks, and IP(3)Rs and IK channels localized in or near this structure. Finally, Ca(2+) imaging revealed that phenylephrine induced discrete endothelial Ca(2+) events through IP(3)R activation. These events were termed recruitable Ca(2+) wavelets on the basis of their spatiotemporal characteristics. From these findings, we conclude that IP(3) flux across myoendothelial gap junctions is sufficient to induce focal Ca(2+) release from IP(3)Rs and activate a discrete pool of IK channels within or near endothelial projections. The resulting hyperpolarization feeds back on smooth muscle to moderate agonist-induced depolarization and constriction.


The Journal of Physiology | 2008

KIR channels function as electrical amplifiers in rat vascular smooth muscle

Pamela D. Smith; Suzanne E. Brett; Kevin D. Luykenaar; Shaun L. Sandow; Sean P. Marrelli; Edward J. Vigmond; Donald G. Welsh

Strong inward rectifying K+ (KIR) channels have been observed in vascular smooth muscle and can display negative slope conductance. In principle, this biophysical characteristic could enable KIR channels to ‘amplify’ responses initiated by other K+ conductances. To test this, we have characterized the diversity of smooth muscle KIR properties in resistance arteries, confirmed the presence of negative slope conductance and then determined whether KIR inhibition alters the responsiveness of middle cerebral, coronary septal and third‐order mesenteric arteries to K+ channel activators. Our initial characterization revealed that smooth muscle KIR channels were highly expressed in cerebral and coronary, but not mesenteric arteries. These channels comprised KIR2.1 and 2.2 subunits and electrophysiological recordings demonstrated that they display negative slope conductance. Computational modelling predicted that a KIR‐like current could amplify the hyperpolarization and dilatation initiated by a vascular K+ conductance. This prediction was consistent with experimental observations which showed that 30 μm Ba2+ attenuated the ability of K+ channel activators to dilate cerebral and coronary arteries. This attenuation was absent in mesenteric arteries where smooth muscle KIR channels were poorly expressed. In summary, smooth muscle KIR expression varies among resistance arteries and when channel are expressed, their negative slope conductance amplifies responses initiated by smooth muscle and endothelial K+ conductances. These findings highlight the fact that the subtle biophysical properties of KIR have a substantive, albeit indirect, role in enabling agonists to alter the electrical state of a multilayered artery.


Archives of Biochemistry and Biophysics | 2011

Role of myosin light chain kinase and myosin light chain phosphatase in the resistance arterial myogenic response to intravascular pressure.

William C. Cole; Donald G. Welsh

The intrinsic ability of vascular smooth muscle cells (VSMCs) within arterial resistance vessels to respectively contract and relax in response to elevation and reduction of intravascular pressure is essential for appropriate blood flow autoregulation. This fundamental mechanism, referred to as the myogenic response, is dependent on apposite control of myosin regulatory light chain (LC(20)) phosphorylation, a prerequisite for force generation, through the coordinated activity of myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP). Here, we highlight the molecular basis of the smooth muscle contractile mechanism and review the regulatory pathways demonstrated to participate in the control of LC(20) phosphorylation in the myogenic response, with a focus on the Ca(2+)-dependent and Rho-associated kinase (ROK)-mediated regulation of MLCK and MLCP, respectively.


Annals of Neurology | 2013

Leptomeningeal collaterals are associated with modifiable metabolic risk factors.

Bijoy K. Menon; Eric E. Smith; Shelagh B. Coutts; Donald G. Welsh; James E. Faber; Mayank Goyal; Michael D. Hill; Andrew M. Demchuk; Zaheed Damani; Kyung Hee Cho; Hyuk Won Chang; Sung Il Sohn

We sought to identify potentially modifiable determinants associated with variability in leptomeningeal collateral status in patients with acute ischemic stroke.


The Journal of Physiology | 2010

Intravascular pressure augments cerebral arterial constriction by inducing voltage-insensitive Ca2+ waves

Rania E. Mufti; Suzanne E. Brett; Cam Ha T. Tran; Rasha Abd El-Rahman; Yana Anfinogenova; Ahmed F. El-Yazbi; William C. Cole; Peter P. Jones; S. R. Wayne Chen; Donald G. Welsh

This study examined whether elevated intravascular pressure stimulates asynchronous Ca2+ waves in cerebral arterial smooth muscle cells and if their generation contributes to myogenic tone development. The endothelium was removed from rat cerebral arteries, which were then mounted in an arteriograph, pressurized (20–100 mmHg) and examined under a variety of experimental conditions. Diameter and membrane potential (VM) were monitored using conventional techniques; Ca2+ wave generation and myosin light chain (MLC20)/MYPT1 (myosin phosphatase targeting subunit) phosphorylation were assessed by confocal microscopy and Western blot analysis, respectively. Elevating intravascular pressure increased the proportion of smooth muscle cells firing asynchronous Ca2+ waves as well as event frequency. Ca2+ wave augmentation occurred primarily at lower intravascular pressures (<60 mmHg) and ryanodine, a plant alkaloid that depletes the sarcoplasmic reticulum (SR) of Ca2+, eliminated these events. Ca2+ wave generation was voltage insensitive as Ca2+ channel blockade and perturbations in extracellular [K+] had little effect on measured parameters. Ryanodine‐induced inhibition of Ca2+ waves attenuated myogenic tone and MLC20 phosphorylation without altering arterial VM. Thapsigargin, an SR Ca2+‐ATPase inhibitor also attenuated Ca2+ waves, pressure‐induced constriction and MLC20 phosphorylation. The SR‐driven component of the myogenic response was proportionally greater at lower intravascular pressures and subsequent MYPT1 phosphorylation measures revealed that SR Ca2+ waves facilitated pressure‐induced MLC20 phosphorylation through mechanisms that include myosin light chain phosphatase inhibition. Cumulatively, our findings show that mechanical stimuli augment Ca2+ wave generation in arterial smooth muscle and that these transient events facilitate tone development particularly at lower intravascular pressures by providing a proportion of the Ca2+ required to directly control MLC20 phosphorylation.


Science Signaling | 2015

Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation

Michelle N. Sullivan; Albert L. Gonzales; Paulo W. Pires; Allison Bruhl; M. Dennis Leo; Wencheng Li; Agathe Oulidi; Frederick A. Boop; Yumei Feng; Jonathan H. Jaggar; Donald G. Welsh; Scott Earley

Peroxidized lipid metabolites trigger calcium influx through the channel TRPA1 to dilate cerebral arteries. Blood Vessel Dilation with Peroxidized Lipids Cerebral arteries must maintain constant blood flow to the brain even though blood pressure fluctuates constantly. Sullivan et al. characterized a signaling pathway that is specific to the endothelial cells that line cerebral arteries. Reactive oxygen species (ROS) cause lipid peroxidation. In endothelial cells in cerebral arteries, locally produced ROS oxidized lipids, which triggered calcium influx through the ion channel TRPA1. In turn, this calcium influx activated a potassium-permeable channel, resulting in dilation of cerebral arteries. Reactive oxygen species (ROS) can have divergent effects in cerebral and peripheral circulations. We found that Ca2+-permeable transient receptor potential ankyrin 1 (TRPA1) channels were present and colocalized with NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 2 (NOX2), a major source of ROS, in the endothelium of cerebral arteries but not in other vascular beds. We recorded and characterized ROS-triggered Ca2+ signals representing Ca2+ influx through single TRPA1 channels, which we called “TRPA1 sparklets.” TRPA1 sparklet activity was low under basal conditions but was stimulated by NOX-generated ROS. Ca2+ entry during a single TRPA1 sparklet was twice that of a TRPV4 sparklet and ~200 times that of an L-type Ca2+ channel sparklet. TRPA1 sparklets representing the simultaneous opening of two TRPA1 channels were more common in endothelial cells than in human embryonic kidney (HEK) 293 cells expressing TRPA1. The NOX-induced TRPA1 sparklets activated intermediate-conductance, Ca2+-sensitive K+ channels, resulting in smooth muscle hyperpolarization and vasodilation. NOX-induced activation of TRPA1 sparklets and vasodilation required generation of hydrogen peroxide and lipid-peroxidizing hydroxyl radicals as intermediates. 4-Hydroxy-nonenal, a metabolite of lipid peroxidation, also increased TRPA1 sparklet frequency and dilated cerebral arteries. These data suggest that in the cerebral circulation, lipid peroxidation metabolites generated by ROS activate Ca2+ influx through TRPA1 channels in the endothelium of cerebral arteries to cause dilation.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Identification of L- and T-type Ca2+ channels in rat cerebral arteries: role in myogenic tone development

Rasha Abd El-Rahman; Osama F. Harraz; Suzanne E. Brett; Yana Anfinogenova; Rania E. Mufti; Daniel Goldman; Donald G. Welsh

L-type Ca(2+) channels are broadly expressed in arterial smooth muscle cells, and their voltage-dependent properties are important in tone development. Recent studies have noted that these Ca(2+) channels are not singularly expressed in vascular tissue and that other subtypes are likely present. In this study, we ascertained which voltage-gated Ca(2+) channels are expressed in rat cerebral arterial smooth muscle and determined their contribution to the myogenic response. mRNA analysis revealed that the α(1)-subunit of L-type (Ca(v)1.2) and T-type (Ca(v)3.1 and Ca(v)3.2) Ca(2+) channels are present in isolated smooth muscle cells. Western blot analysis subsequently confirmed protein expression in whole arteries. With the use of patch clamp electrophysiology, nifedipine-sensitive and -insensitive Ba(2+) currents were isolated and each were shown to retain electrical characteristics consistent with L- and T-type Ca(2+) channels. The nifedipine-insensitive Ba(2+) current was blocked by mibefradil, kurtoxin, and efonidpine, T-type Ca(2+) channel inhibitors. Pressure myography revealed that L-type Ca(2+) channel inhibition reduced tone at 20 and 80 mmHg, with the greatest effect at high pressure when the vessel is depolarized. In comparison, the effect of T-type Ca(2+) channel blockade on myogenic tone was more limited, with their greatest effect at low pressure where vessels are hyperpolarized. Blood flow modeling revealed that the vasomotor responses induced by T-type Ca(2+) blockade could alter arterial flow by ∼20-50%. Overall, our findings indicate that L- and T-type Ca(2+) channels are expressed in cerebral arterial smooth muscle and can be electrically isolated from one another. Both conductances contribute to myogenic tone, although their overall contribution is unequal.


IEEE Transactions on Biomedical Engineering | 2010

Modeling the Role of the Coronary Vasculature During External Field Stimulation

Martin J. Bishop; Patrick M. Boyle; Gernot Plank; Donald G. Welsh; Edward J. Vigmond

The exact mechanisms by which defibrillation shocks excite cardiac tissue far from both the electrodes and heart surfaces require elucidation. Bidomain theory explains this phenomena through the existence of intramural virtual electrodes (VEs), caused by discontinuities in myocardial tissue structure. In this study, we assess the modeling components essential in constructing a finite-element cardiac tissue model including blood vessels from high-resolution magnetic resonance data and investigate the specific role played by coronary vasculature in VE formation, which currently remains largely unknown. We use a novel method for assigning histologically based fiber architecture around intramural structures and include an experimentally derived vessel lumen wall conductance within the model. Shock-tissue interaction in the presence of vessels is assessed through comparison with a simplified model lacking intramural structures. Results indicate that VEs form around blood vessels for shocks >8 V/cm. The magnitude of induced polarizations is attenuated by realistic representation of fiber negotiation around vessel cavities, as well as the insulating effects of the vessel lumen wall. Furthermore, VEs formed around large subepicardial vessels reduce epicardial polarization levels. In conclusion, we have found that coronary vasculature acts as an important substrate for VE formation, which may help interpretation of optical mapping data.

Collaboration


Dive into the Donald G. Welsh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge