Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald J. Chisholm is active.

Publication


Featured researches published by Donald J. Chisholm.


AIDS | 1998

A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving Hiv protease inhibitors

Andrew Carr; Katherine Samaras; Samantha Burton; Matthew Law; Judith Freund; Donald J. Chisholm; David A. Cooper

Objective:To describe a syndrome of peripheral lipodystrophy (fat wasting of the face, limbs and upper trunk), hyperlipidaemia and insulin resistance in patients receiving potent HIV protease inhibitor therapy. Design:Cross-sectional study. Setting:Outpatient clinic of a university teaching hospital. Patients:HIV-infected patients either receiving at least one protease inhibitor (n = 116) or protease inhibitor-naive (n = 32), and healthy men (n = 47). Interventions and main outcome measures:Lipodystrophy was assessed by physical examination and questionnaire and body composition by dual-energy X-ray absorptiometry. Fasting triglyceride, cholesterol, free fatty acid, glucose, insulin, C-peptide and fructosamine levels, other metabolic parameters, CD4 lymphocyte counts, and HIV RNA load were also assessed. Results:HIV protease inhibitor-naive patients had similar body composition to healthy men. HIV protease inhibitor therapy was associated with substantially lower total body fat (13.2 versus 18.7 kg in protease inhibitor-naive patients; P = 0.005), and significantly higher total cholesterol and triglyceride levels. Lipodystrophy was observed clinically in 74 (64%) protease inhibitor recipients after a mean 13.9 months and 1(3%) protease inhibitor-naive patient (P = 0.0001). Fat loss occurred in all regions except the abdomen after a median 10 months. Patients with lipodystrophy experienced a relative weight loss of 0.5 kg per month and had significantly higher triglyceride, cholesterol, insulin and C-peptide levels and were more insulin-resistant than protease inhibitor recipients without lipodystrophy. Patients receiving ritonavir and saquinavir in combination had significantly lower body fat, higher lipids and shorter time to lipodystrophy than patients receiving indinavir. Three (2%) patients developed new or worsening diabetes mellitus. Conclusion:A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance is a common complication of HIV protease inhibitors. Diabetes mellitus is relatively uncommon.


The Lancet | 1998

Pathogenesis of HIV-1-protease inhibitor-associated peripheral lipodystrophy, hyperlipidaemia, and insulin resistance

Andrew Carr; Katherine Samaras; Donald J. Chisholm; David A. Cooper

HIV-1 protease-inhibitor treatments are associated with a syndrome of peripheral lipodystrophy, central adiposity, breast hypertrophy in women, hyperlipidaemia, and insulin resistance. The catalytic region of HIV-1 protease, to which protease inhibitors bind, has approximately 60% homology to regions within two proteins that regulate lipid metabolism: cytoplasmic retinoic-acid binding protein type 1 (CRABP-1) and low density lipoprotein-receptor-related protein (LRP). We hypothesise that protease inhibitors inhibit CRABP-1-modified, and cytochrome P450 3A-mediated synthesis of cis-9-retinoic acid, a key activator of the retinoid X receptor; and peroxisome proliferator activated receptor type gamma (PPAR-gamma) heterodimer, an adipocyte receptor that regulates peripheral adipocyte differentiation and apoptosis. Protease-inhibitor binding to LRP would impair hepatic chylomicron uptake and triglyceride clearance by the endothelial LRP-lipoprotein lipase complex. The resulting hyperlipidaemia contributes to central fat deposition (and in the breasts in the presence of oestrogen), insulin resistance, and, in susceptible individuals, type 2 diabetes. Understanding the syndromes pathogenesis should lead to treatment strategies and to the design of protease inhibitors that do not cause this syndrome.


Diabetes | 1991

Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega-3 fatty acids in muscle phospholipid.

Leonard H Storlien; Arthur Jenkins; Donald J. Chisholm; Wendy S. Pascoe; Sue Khouri; Edward W. Kraegen

High levels of some but not all dietary fats lead to insulin resistance in rats. The aim of this study was to investigate the important determinants underlying this observation. Insulin action was assessed with the euglycemic clamp. Diets high in saturated, monounsaturated (ω-9), or polyunsaturated (ω-6) fatty acids led to severe insulin resistance; glucose infusion rates [GIR] to maintain euglycemia at ∼1000 pM insulin were 6.2 ± 0.9, 8.9 ± 0.9, and 9.7 ± 0.4 mg · kg−1 · min−1, respectively, versus 16.1 ± 1.0 mg · kg−1 · min−1 in chow-fed controls. Substituting 11% of fatty acids in the polyunsaturated fat diet with long-chain ω-3 fatty acids from fish oils normalized insulin action (GIR 15.0 ± 1.3 mg · kg−1 · min−1). Similar replacement with short-chain ω-3 (α-linolenic acid, 18:3ω3) was ineffective in the polyunsaturated diet (GIR 9.9 ± 0.5 mg · kg−1 · min−1) but completely prevented the insulin resistance induced by a saturated-fat diet (GIR 16.0 ± 1.5 mg · kg−1 · min−1) and did so in both the liver and peripheral tissues. Insulin sensitivity in skeletal muscle was inversely correlated with mean muscle triglyceride accumulation (r = 0.95 and 0.86 for soleus and red quadriceps, respectively; both P = 0.01). Furthermore, percentage of long-chain ω-3 fatty acid in phospholipid measured in red quadriceps correlated highly with insulin action in that muscle (r = 0.97). We conclude that 1) the particular fatty acids and the lipid environment in which they are presented in high-fat diets determine insulin sensitivity in rats; 2) impaired insulin action in skeletal muscle relates to triglyceride accumulation, suggesting intracellular glucose–fatty acid cycle involvement; and 3) long-chain ω-3 fatty acids in phospholipid of skeletal muscle may be important for efficient insulin action.


The New England Journal of Medicine | 1993

The Relation between Insulin Sensitivity and the Fatty-Acid Composition of Skeletal-Muscle Phospholipids

Mark Borkman; Leonard H Storlien; David A. Pan; Arthur Jenkins; Donald J. Chisholm; Lesley V. Campbell

BACKGROUND Insulin resistance and hyperinsulinemia are features of obesity, non-insulin-dependent diabetes mellitus, and other disorders. Skeletal muscle is a major site of insulin action, and insulin sensitivity may be related to the fatty-acid composition of the phospholipids within the muscle membranes involved in the action of insulin. METHODS We determined the relation between the fatty-acid composition of skeletal-muscle phospholipids and insulin sensitivity in two groups of subjects. In one study, we obtained samples of the rectus abdominis muscle from 27 patients undergoing coronary artery surgery; fasting serum insulin levels provided an index of insulin sensitivity. In the second study, a biopsy of the vastus lateralis muscle was performed in 13 normal men, and insulin sensitivity was assessed by euglycemic-clamp studies. RESULTS In the patients undergoing surgery, the fasting serum insulin concentration (a measure of insulin resistance) was negatively correlated with the percentage of individual long-chain polyunsaturated fatty acids in the phospholipid fraction of muscle, particularly arachidonic acid (r = -0.63, P < 0.001); the total percentage of C20-22 polyunsaturated fatty acids (r = -0.68, P < 0.001); the average degree of fatty-acid unsaturation (r = -0.61, P < 0.001); and the ratio of the percentage of C20:4 n-6 fatty acids to the percentage of C20:3 n-6 fatty acids (r = -0.55, P < 0.01), an index of fatty-acid desaturase activity. In the normal men, insulin sensitivity was positively correlated with the percentage of arachidonic acid in muscle (r = 0.76, P < 0.01), the total percentage of C20-22 polyunsaturated fatty acids (r = 0.76, P < 0.01), the average degree of fatty-acid unsaturation (r = 0.62, P < 0.05), and the ratio of C20:4 n-6 to C20:3 n-6 (rho = 0.76, P = 0.007). CONCLUSIONS Decreased insulin sensitivity is associated with decreased concentrations of polyunsaturated fatty acids in skeletal-muscle phospholipids, raising the possibility that changes in the fatty-acid composition of muscles modulate the action of insulin.


Diabetes | 1996

Abdominal Fat and Insulin Resistance in Normal and Overweight Women: Direct Measurements Reveal a Strong Relationship in Subjects at Both Low and High Risk of NIDDM

David G Carey; Arthur Jenkins; Lesley V. Campbell; Judith Freund; Donald J. Chisholm

Insulin resistance appears to be central to obesity, NIDDM, hyperlipidemia, and cardiovascular disease. While obese women with abdominal (android) fat distribution are more insulin resistant than those with peripheral (gynecoid) obesity, in nonobese women, the relationship between abdominal fat and insulin resistance is unknown. By measuring regional adiposity with dual-energy X-ray absorptiometry and insulin sensitivity by euglycemic-hyperinsulinemic clamp in 22 healthy women, with a mean ± SE body BMI of 26.7 ± 0.9 kg/m2 and differing risk factors for NIDDM, we found a strong negative relationship between central abdominal (intra-abdominal plus abdominal subcutaneous) fat and whole-body insulin sensitivity (r = −0.89, P < 0.0001) and nonoxidative glucose disposal (r = −0.77, P < 0.001), independent of total adiposity, family history of NIDDM, and past gestational diabetes. There was a large variation in insulin sensitivity, with a similar variation in central fat, even in those whose BMI was <25 kg/m2. Abdominal fat had a significantly stronger relationship with insulin sensitivity than peripheral nonabdominal fat (r2 = 0.79 vs. 0.44), and higher levels were associated with increased fasting nonesterified fatty acids, lipid oxidation, and hepatic glucose output. Because 79% of the variance in insulin sensitivity in this heterogeneous population was accounted for by central fat, abdominal adiposity appears to be a strong marker and may be a major determinant of insulin resistance in women.


Diabetes | 1991

Development of Muscle Insulin Resistance After Liver Insulin Resistance in High-Fat–Fed Rats

Edward W. Kraegen; Peter W Clark; Arthur Jenkins; Eugene A Daley; Donald J. Chisholm; Leonard H Storlien

Muscle and hepatic insulin resistance are two major defects of non-insulin-dependent diabetes mellitus. Dietary factors may be important in the etiology of insulin resistance. We studied progressive changes in the development of high-fat–diet–induced insulin resistance in tissues of the adult male Wistar rat. In vivo insulin action was compared 3 days and 3 wk after isocaloric synthetic high-fat or high-starch feeding (59 and 10% cal as fat, respectively). Basal and insulin-stimulated glucose metabolism were assessed in the conscious 5- to 7-h fasted state with the euglycemic clamp (600 pM insulin) with a [3-3H]-glucose infusion. Fat feeding significantly reduced suppressibility of hepatic glucose output by insulin after both 3 days and 3 wk of diet (P < 0.01). However, a significant impairment of insulin-mediated peripheral glucose disposal was only present after 3 wk of diet. Further in vivo [3H]-2-deoxyglucose uptake studies supported this finding and demonstrated adipose but not muscle insulin resistance after 3 days of high-fat feeding. Muscle triglyceride accumulation due to fat feeding was not significant at 3 days but had doubled by 3 wk in red muscle (P < 0.001) compared with starch-fed controls. By 3 wk, high-fat—fed animals had developed significant glucose intolerance. We concludethat fat feeding induces insulin resistance in liver and adipose tissue before skeletal muscle with early metabolic changes favoring an oversupply of energy substrate to skeletal muscle relative to metabolic needs. This may generate later muscle insulin resistance.


Diabetes | 1997

Mechanisms of Liver and Muscle Insulin Resistance Induced by Chronic High-Fat Feeding

Nicholas D. Oakes; Gregory J. Cooney; Souad Camilleri; Donald J. Chisholm; Edward W. Kraegen

To elucidate cellular mechanisms of insulin resistance induced by excess dietary fat, we studied conscious chronically high-fat–fed (HFF) and control chow diet-fed rats during euglycemic-hyperinsulinemic (560 pmol/1 plasma insulin) clamps. Compared with chow diet feeding, fat feeding significantly impaired insulin action (reduced whole body glucose disposal rate, reduced skeletal muscle glucose metabolism, and decreased insulin suppressibility of hepatic glucose production [HGP]). In HFF rats, hyperinsulinemia significantly suppressed circulating free fatty acids but not the intracellular availability of fatty acid in skeletal muscle (long chain fatty acyl-CoA esters remained at 230% above control levels). In HFF animals, acute blockade of β-oxidation using etomoxir increased insulin-stimulated muscle glucose uptake, via a selective increase in the component directed to glycolysis, but did not reverse the defect in net glycogen synthesis or glycogen synthase. In clamp HFF animals, etomoxir did not significantly alter the reduced ability of insulin to suppress HGP, but induced substantial depletion of hepatic glycogen content. This implied that gluconeo-genesis was reduced by inhibition of hepatic fatty acid oxidation and that an alternative mechanism was involved in the elevated HGP in HFF rats. Evidence was then obtained suggesting that this involves a reduction in hepatic glucokinase (GK) activity and an inability of insulin to acutely lower glucose-6-phos-phatase (G-6-Pase) activity. Overall, a 76% increase in the activity ratio G-6-Pase/GK was observed, which would favor net hepatic glucose release and elevated HGP in HFF rats. Thus in the insulin-resistant HFF rat 1) acute hyperinsulinemia fails to quench elevated muscle and liver lipid availability, 2) elevated lipid oxidation opposes insulin stimulation of muscle glucose oxidation (perhaps via the glucose-fatty acid cycle) and suppression of hepatic gluconeogenesis, and 3) mechanisms of impaired insulin-stimulated glucose storage and HGP suppressibility are not dependent on concomitant lipid oxidation; in the case of HGP we provide evidence for pivotal involvement of G-6-Pase and GK in the regulation of HGP by insulin, independent of the glucose source.


Hepatology | 2008

Visceral fat: A key mediator of steatohepatitis in metabolic liver disease†

David van der Poorten; Kerry-Lee Milner; Jason M. Hui; Alexander Hodge; Michael I. Trenell; James G. Kench; Roslyn M. London; Tony Peduto; Donald J. Chisholm; Jacob George

Visceral obesity is intimately associated with metabolic disease and adverse health outcomes. However, a direct association between increasing amounts of visceral fat and end‐organ inflammation and scarring has not been demonstrated. We examined the association between visceral fat and liver inflammation in patients with nonalcoholic fatty liver disease (NAFLD) to delineate the importance of visceral fat to progressive steatohepatitis and hence the inflammatory pathogenesis of the metabolic syndrome. We undertook a cross‐sectional, proof of concept study in 38 consecutive adults with NAFLD at a tertiary liver clinic. All subjects had a complete physical examination, anthropometric assessment, and fasting blood tests on the day of liver biopsy. Abdominal fat volumes were assessed by magnetic resonance imaging within 2 weeks of liver biopsy. The extent of hepatic inflammation and fibrosis augmented incrementally with increases in visceral fat (P < 0.01). For each 1% increase in visceral fat, the odds ratio for increasing liver inflammation and fibrosis was 2.4 (confidence interval [CI]: 1.3‐4.2) and 3.5 (CI: 1.7‐7.1), respectively. Visceral fat remained an independent predictor of advanced steatohepatitis (odds ratio [OR] 2.1, CI: 1.1‐4.2, P = 0.05) and fibrosis (OR 2.9, CI: 1.4‐6.3, P = 0.006) even when controlled for insulin resistance and hepatic steatosis. Interleukin‐6 (IL‐6) levels, which correlated with visceral fat, also independently predicted increasing liver inflammation. Visceral fat was associated with all components of the metabolic syndrome. Conclusion: Visceral fat is directly associated with liver inflammation and fibrosis independent of insulin resistance and hepatic steatosis. Visceral fat should therefore be a central target for future interventions in nonalcoholic steatohepatitis and indeed all metabolic disease. (HEPATOLOGY 2008.)


Diabetes | 1997

Alterations in the Expression and Cellular Localization of Protein Kinase C Isozymes ε and θ Are Associated With Insulin Resistance in Skeletal Muscle of the High-Fat–Fed Rat

Carol L. Browne; Nicholas D. Oakes; Allan Watkinson; Donald J. Chisholm; Edward W. Kraegen; Trevor J. Biden

We have tested the hypothesis that changes in the levels and cellular location of protein kinase C (PKC) isozymes might be associated with the development of insulin resistance in skeletal muscles from the highfat–fed rat. Lipid measurements showed that triglyceride and diacylglycerol, an activator of PKC, were elevated four- and twofold, respectively. PKC activity assays indicated that the proportion of membraneassociated calcium-independent PKC was also increased. As determined by immunoblotting, total (particulate plus cytosolic) PKC α, ε, and ζ levels were not different between control and fat-fed rats. However, the ratio of particulate to cytosolic PKC ε in red muscles from fat-fed rats was increased nearly sixfold, suggesting chronic activation. In contrast, the amount of cytosolic PKC θ was downregulated to 45% of control, while the ratio of particulate to cytosolic levels increased, suggesting a combination of chronic activation and downregulation. Interestingly, while insulin infusion in glucose-clamped rats increased the proportion of PKC θ in the particulate fraction of red muscle, this was potentiated by fat-feeding, suggesting that the translocation is a consequence of altered lipid flux rather than a proximal event in insulin signaling. PKC ε and θ measurements from individual rats correlated with triglyceride content of red gastrocnemius muscle; they did not correlate with plasma glucose, which was not elevated in fat-fed rats, suggesting that they were not simply a consequence of hyperglycemia. Our results suggest that these specific alterations in PKC ε and PKC θ might contribute to the link between increased lipid availability and muscle insulin resistance previously described using high-fat–fed rats.


International Journal of Obesity | 2008

The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women

E G Trapp; Donald J. Chisholm; Judith Freund; Stephen H. Boutcher

Objective:To determine the effects of a 15-week high-intensity intermittent exercise (HIIE) program on subcutaneous and trunk fat and insulin resistance of young women.Design and procedures:Subjects were randomly assigned to one of the three groups: HIIE (n=15), steady-state exercise (SSE; n=15) or control (CONT; n=15). HIIE and SSE groups underwent a 15-week exercise intervention.Subjects:Forty-five women with a mean BMI of 23.2±2.0 kg m−2 and age of 20.2±2.0 years.Results:Both exercise groups demonstrated a significant improvement (P<0.05) in cardiovascular fitness. However, only the HIIE group had a significant reduction in total body mass (TBM), fat mass (FM), trunk fat and fasting plasma insulin levels. There was significant fat loss (P<0.05) in legs compared to arms in the HIIE group only. Lean compared to overweight women lost less fat after HIIE. Decreases in leptin concentrations were negatively correlated with increases in VO2peak (r=−0.57, P<0.05) and positively correlated with decreases in TBM (r=0.47; P<0.0001). There was no significant change in adiponectin levels after training.Conclusions:HIIE three times per week for 15 weeks compared to the same frequency of SSE exercise was associated with significant reductions in total body fat, subcutaneous leg and trunk fat, and insulin resistance in young women.

Collaboration


Dive into the Donald J. Chisholm's collaboration.

Top Co-Authors

Avatar

Edward W. Kraegen

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Lesley V. Campbell

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stuart M. Furler

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Katherine Samaras

St. Vincent's Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerry R. Greenfield

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. P. Alford

St. Vincent's Health System

View shared research outputs
Top Co-Authors

Avatar

Ann M. Poynten

Garvan Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge