Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald J. Zack is active.

Publication


Featured researches published by Donald J. Zack.


Neuron | 1997

Crx, a Novel Otx-like Paired-Homeodomain Protein, Binds to and Transactivates Photoreceptor Cell-Specific Genes

Shiming Chen; Qing Liang Wang; Zuqin Nie; Hui Sun; Gregory G. Lennon; Neal G. Copeland; Debra J. Gilbert; Nancy A. Jenkins; Donald J. Zack

The otd/Otx gene family encodes paired-like homeodomain proteins that are involved in the regulation of anterior head structure and sensory organ development. Using the yeast one-hybrid screen with a bait containing the Ret 4 site from the bovine rhodopsin promoter, we have cloned a new member of the family, Crx (Cone rod homeobox). Crx encodes a 299 amino acid residue protein with a paired-like homeodomain near its N terminus. In the adult, it is expressed predominantly in photoreceptors and pinealocytes. In the developing mouse retina, it is expressed by embryonic day 12.5 (E12.5). Recombinant Crx binds in vitro not only to the Ret 4 site but also to the Ret 1 and BAT-1 sites. In transient transfection studies, Crx transactivates rhodopsin promoter-reporter constructs. Its activity is synergistic with that of Nrl. Crx also binds to and transactivates the genes for several other photoreceptor cell-specific proteins (interphotoreceptor retinoid-binding protein, beta-phosphodiesterase, and arrestin). Human Crx maps to chromosome 19q13.3, the site of a cone rod dystrophy (CORDII). These studies implicate Crx as a potentially important regulator of photoreceptor cell development and gene expression and also identify it as a candidate gene for CORDII and other retinal diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genetic variants near TIMP3 and high-density lipoprotein–associated loci influence susceptibility to age-related macular degeneration

Wei Chen; Dwight Stambolian; Albert O. Edwards; Kari Branham; Mohammad Othman; Johanna Jakobsdottir; Nirubol Tosakulwong; Margaret A. Pericak-Vance; Peter A. Campochiaro; Michael L. Klein; Perciliz L. Tan; Yvette P. Conley; Atsuhiro Kanda; Laura J. Kopplin; Yanming Li; Katherine J. Augustaitis; Athanasios J. Karoukis; William K. Scott; Anita Agarwal; Jaclyn L. Kovach; Stephen G. Schwartz; Eric A. Postel; Matthew Brooks; Keith H. Baratz; William L. Brown; Alexander J. Brucker; Anton Orlin; Gary C. Brown; Allen C. Ho; Carl D. Regillo

We executed a genome-wide association scan for age-related macular degeneration (AMD) in 2,157 cases and 1,150 controls. Our results validate AMD susceptibility loci near CFH (P < 10−75), ARMS2 (P < 10−59), C2/CFB (P < 10−20), C3 (P < 10−9), and CFI (P < 10−6). We compared our top findings with the Tufts/Massachusetts General Hospital genome-wide association study of advanced AMD (821 cases, 1,709 controls) and genotyped 30 promising markers in additional individuals (up to 7,749 cases and 4,625 controls). With these data, we identified a susceptibility locus near TIMP3 (overall P = 1.1 × 10−11), a metalloproteinase involved in degradation of the extracellular matrix and previously implicated in early-onset maculopathy. In addition, our data revealed strong association signals with alleles at two loci (LIPC, P = 1.3 × 10−7; CETP, P = 7.4 × 10−7) that were previously associated with high-density lipoprotein cholesterol (HDL-c) levels in blood. Consistent with the hypothesis that HDL metabolism is associated with AMD pathogenesis, we also observed association with AMD of HDL-c—associated alleles near LPL (P = 3.0 × 10−3) and ABCA1 (P = 5.6 × 10−4). Multilocus analysis including all susceptibility loci showed that 329 of 331 individuals (99%) with the highest-risk genotypes were cases, and 85% of these had advanced AMD. Our studies extend the catalog of AMD associated loci, help identify individuals at high risk of disease, and provide clues about underlying cellular pathways that should eventually lead to new therapies.


Nature Genetics | 2001

A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy

Kang Zhang; Marina Kniazeva; Min Han; Wen Li; Zhengya Yu; Zhenglin Yang; Yang Li; Michael L. Metzker; Rando Allikmets; Donald J. Zack; Laura E. Kakuk; Pamela S. Lagali; Paul Wong; Ian M. MacDonald; Paul A. Sieving; David J. Figueroa; Christopher P. Austin; Robert J. Gould; Radha Ayyagari; Konstantin Petrukhin

Stargardt-like macular dystrophy (STGD3, MIM 600110) and autosomal dominant macular dystrophy (adMD) are inherited forms of macular degeneration characterized by decreased visual acuity, macular atrophy and extensive fundus flecks. Genetic mapping data suggest that mutations in a single gene may be responsible for both conditions, already known to bear clinical resemblance. Here we limit the minimum genetic region for STGD3 and adMD to a 0.6-cM interval by recombination breakpoint mapping and identify a single 5-bp deletion within the protein-coding region of a new retinal photoreceptor-specific gene, ELOVL4, in all affected members of STGD3 and adMD families. Bioinformatic analysis of ELOVL4 revealed that it has homology to a group of yeast proteins that function in the biosynthesis of very long chain fatty acids. Our results are therefore the first to implicate the biosynthesis of fatty acids in the pathogenesis of inherited macular degeneration.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC)

Benjamin M. Neale; Jesen Fagerness; Robyn Reynolds; Lucia Sobrin; Margaret M. Parker; Soumya Raychaudhuri; Perciliz L. Tan; Edwin C. Oh; Joanna E. Merriam; Eric H. Souied; Paul S. Bernstein; Binxing Li; Jeanne M. Frederick; Kang Zhang; Milam A. Brantley; Aaron Y. Lee; Donald J. Zack; Betsy Campochiaro; Peter A. Campochiaro; Stephan Ripke; R. Theodore Smith; Gaetano R. Barile; Nicholas Katsanis; Rando Allikmets; Mark J. Daly; Johanna M. Seddon

Advanced age-related macular degeneration (AMD) is the leading cause of late onset blindness. We present results of a genome-wide association study of 979 advanced AMD cases and 1,709 controls using the Affymetrix 6.0 platform with replication in seven additional cohorts (totaling 5,789 unrelated cases and 4,234 unrelated controls). We also present a comprehensive analysis of copy-number variations and polymorphisms for AMD. Our discovery data implicated the association between AMD and a variant in the hepatic lipase gene (LIPC) in the high-density lipoprotein cholesterol (HDL) pathway (discovery P = 4.53e-05 for rs493258). Our LIPC association was strongest for a functional promoter variant, rs10468017, (P = 1.34e-08), that influences LIPC expression and serum HDL levels with a protective effect of the minor T allele (HDL increasing) for advanced wet and dry AMD. The association we found with LIPC was corroborated by the Michigan/Penn/Mayo genome-wide association study; the locus near the tissue inhibitor of metalloproteinase 3 was corroborated by our replication cohort for rs9621532 with P = 3.71e-09. We observed weaker associations with other HDL loci (ABCA1, P = 9.73e-04; cholesterylester transfer protein, P = 1.41e-03; FADS1-3, P = 2.69e-02). Based on a lack of consistent association between HDL increasing alleles and AMD risk, the LIPC association may not be the result of an effect on HDL levels, but it could represent a pleiotropic effect of the same functional component. Results implicate different biologic pathways than previously reported and provide new avenues for prevention and treatment of AMD.


Journal of Cellular Physiology | 2001

Pigment Epithelium-Derived Factor Inhibits Retinal and Choroidal Neovascularization

Keisuke Mori; Elia J. Duh; Peter L. Gehlbach; Akira Ando; Kyoichi Takahashi; Joel Pearlman; Keiko Mori; Hoseong S. Yang; Donald J. Zack; Damodar Ettyreddy; Douglas E. Brough; Lisa L. Wei; Peter A. Campochiaro

In this study, we investigated whether overexpression of pigment epithelium‐derived factor (PEDF) by gene transfer can inhibit neovascularization by testing its effect in three different models of ocular neovascularization. Intravitreous injection of an adenoviral vector encoding PEDF resulted in expression of PEDF mRNA in the eye measured by RT‐PCR and increased immunohistochemical staining for PEDF protein throughout the retina. In mice with laser‐induced rupture of Bruchs membrane, choroidal neovascularization was significantly reduced after intravitreous injection of PEDF vector compared to injection of null vector or no injection. Subretinal injection of the PEDF vector resulted in prominent staining for PEDF in retinal pigmented epithelial cells and strong inhibition of choroidal neovascularization. In two models of retinal neovascularization (transgenic mice with increased expression of vascular endothelial growth factor (VEGF) in photoreceptors and mice with oxygen‐induced ischemic retinopathy), intravitreous injection of null vector resulted in decreased neovascularization compared to no injection, but intravitreous injection of PEDF vector resulted in further inhibition of neovascularization that was statistically significant. These data suggest that sustained increased intraocular expression of PEDF by gene therapy might provide a promising approach for treatment of ocular neovascularization.


BMC Bioinformatics | 2008

TiGER: A database for tissue-specific gene expression and regulation

Xiong Liu; Xueping Yu; Donald J. Zack; Heng Zhu; Jiang Qian

BackgroundUnderstanding how genes are expressed and regulated in different tissues is a fundamental and challenging question. However, most of currently available biological databases do not focus on tissue-specific gene regulation.ResultsThe recent development of computational methods for tissue-specific combinational gene regulation, based on transcription factor binding sites, enables us to perform a large-scale analysis of tissue-specific gene regulation in human tissues. The results are stored in a web database called TiGER (Tissue-specific Gene Expression and Regulation). The database contains three types of data including tissue-specific gene expression profiles, combinatorial gene regulations, and cis-regulatory module (CRM) detections. At present the database contains expression profiles for 19,526 UniGene genes, combinatorial regulations for 7,341 transcription factor pairs and 6,232 putative CRMs for 2,130 RefSeq genes.ConclusionWe have developed and made publicly available a database, TiGER, which summarizes and provides large scale data sets for tissue-specific gene expression and regulation in a variety of human tissues. This resource is available at [1].


Neuron | 1997

Mutations in the Cone-Rod Homeobox Gene Are Associated with the Cone-Rod Dystrophy Photoreceptor Degeneration

Prabodha K. Swain; Shiming Chen; Qing Liang Wang; Louisa M. Affatigato; Caraline L. Coats; Kevin D. Brady; Gerald A. Fishman; Samuel G. Jacobson; Anand Swaroop; Edwin M. Stone; Paul A. Sieving; Donald J. Zack

Crx is a novel paired-like homeodomain protein that is expressed predominantly in retinal photoreceptors and pinealocytes. Its gene has been mapped to chromosome 19q13.3, the site of a disease locus for autosomal dominant cone-rod dystrophy (CORDII). Analysis of the proband from a family with autosomal dominant CORD revealed an Arg41Trp substitution in the third residue of the CRX homeodomain. The sequence change cosegregated with the disease phenotype and was not detected in 247 normal controls. Recombinant CRX homeodomain containing the Arg41Trp substitution showed decreased DNA binding activity. Analysis of another 169 CORD probands identified three additional CRX sequence variations (Arg41Gln, Val242Met, and a 4 bp deletion in codons 196/7) that were not found among the controls. This data suggests that mutations in the CRX gene are associated with photoreceptor degeneration and that the Crx protein is necessary for the maintenance of normal cone and rod function.


Nature Genetics | 2011

A rare penetrant mutation in CFH confers high risk of age-related macular degeneration

Soumya Raychaudhuri; Oleg Iartchouk; Kimberly A. Chin; Perciliz L. Tan; Albert K. Tai; Stephan Ripke; Sivakumar Gowrisankar; Soumya Vemuri; Kate Montgomery; Yi Yu; Robyn Reynolds; Donald J. Zack; Betsy Campochiaro; Peter A. Campochiaro; Nicholas Katsanis; Mark J. Daly; Johanna M. Seddon

Two common variants in the gene encoding complement factor H (CFH), the Y402H substitution (rs1061170, c.1204C>T) and the intronic rs1410996 SNP, explain 17% of age-related macular degeneration (AMD) liability. However, proof for the involvement of CFH, as opposed to a neighboring transcript, and knowledge of the potential mechanism of susceptibility alleles are lacking. Assuming that rare functional variants might provide mechanistic insights, we used genotype data and high-throughput sequencing to discover a rare, high-risk CFH haplotype with a c.3628C>T mutation that resulted in an R1210C substitution. This allele has been implicated previously in atypical hemolytic uremic syndrome, and it abrogates C-terminal ligand binding. Genotyping R1210C in 2,423 AMD cases and 1,122 controls demonstrated high penetrance (present in 40 cases versus 1 control, P = 7.0 × 10−6) and an association with a 6-year-earlier onset of disease (P = 2.3 × 10−6). This result suggests that loss-of-function alleles at CFH are likely to drive AMD risk. This finding represents one of the first instances in which a common complex disease variant has led to the discovery of a rare penetrant mutation.


Human Molecular Genetics | 2011

Common Variants near FRK/COL10A1 and VEGFA are Associated with Advanced Age-related Macular Degeneration

Yi Yu; Tushar Bhangale; Jesen Fagerness; Stephan Ripke; Gudmar Thorleifsson; Perciliz L. Tan; E. Souied; Andrea J. Richardson; Joanna E. Merriam; Gabriëlle H.S. Buitendijk; Robyn Reynolds; Soumya Raychaudhuri; Kimberly A. Chin; Lucia Sobrin; Evangelos Evangelou; Phil H. Lee; Aaron Y. Lee; Nicolas Leveziel; Donald J. Zack; Betsy Campochiaro; Peter A. Campochiaro; R. Theodore Smith; Gaetano R. Barile; Robyn H. Guymer; Ruth E. Hogg; Usha Chakravarthy; Luba Robman; Omar Gustafsson; Haraldur Sigurdsson; Ward Ortmann

Despite significant progress in the identification of genetic loci for age-related macular degeneration (AMD), not all of the heritability has been explained. To identify variants which contribute to the remaining genetic susceptibility, we performed the largest meta-analysis of genome-wide association studies to date for advanced AMD. We imputed 6 036 699 single-nucleotide polymorphisms with the 1000 Genomes Project reference genotypes on 2594 cases and 4134 controls with follow-up replication of top signals in 5640 cases and 52 174 controls. We identified two new common susceptibility alleles, rs1999930 on 6q21-q22.3 near FRK/COL10A1 [odds ratio (OR) 0.87; P = 1.1 × 10−8] and rs4711751 on 6p12 near VEGFA (OR 1.15; P = 8.7 × 10−9). In addition to the two novel loci, 10 previously reported loci in ARMS2/HTRA1 (rs10490924), CFH (rs1061170, and rs1410996), CFB (rs641153), C3 (rs2230199), C2 (rs9332739), CFI (rs10033900), LIPC (rs10468017), TIMP3 (rs9621532) and CETP (rs3764261) were confirmed with genome-wide significant signals in this large study. Loci in the recently reported genes ABCA1 and COL8A1 were also detected with suggestive evidence of association with advanced AMD. The novel variants identified in this study suggest that angiogenesis (VEGFA) and extracellular collagen matrix (FRK/COL10A1) pathways contribute to the development of advanced AMD.


American Journal of Pathology | 2002

Inducible Expression of Vascular Endothelial Growth Factor in Adult Mice Causes Severe Proliferative Retinopathy and Retinal Detachment

Kyoko Ohno-Matsui; Akira Hirose; Satoru Yamamoto; Jina Saikia; Naoyuki Okamoto; Peter L. Gehlbach; Elia J. Duh; Sean F. Hackett; Michelle Chang; Dean Bok; Donald J. Zack; Peter A. Campochiaro

Transgenic mice with vascular endothelial growth factor (VEGF) driven by the rhodopsin promoter (rho/VEGF mice) develop neovascularization that originates from the deep capillary bed of the retina and grows into the subretinal space. In rho/VEGF mice, VEGF expression in photoreceptors begins between postnatal days 5 and 7, the period when the deep capillary bed is developing. An important question is whether or not the developmental stage of the deep capillary bed is critical for occurrence of neovascularization. Also, although rho/VEGF mice are extremely useful for the study of ocular neovascularization, there are some applications for which the early onset of VEGF expression is a disadvantage. In this study, we used the reverse tetracycline transactivator (rtTA) inducible promoter system coupled to either the rhodopsin or interphotoreceptor retinoid-binding protein (IRBP) promoter to control the time of onset of VEGF transgene expression in photoreceptors. In the absence of doxycycline, adult double-transgenic rho/rtTA-TRE/VEGF or IRBP/rtTA-TRE/VEGF mice showed little VEGF transgene expression and no phenotype. The addition of doxycycline to the drinking water resulted in prominent transgene expression and evidence of neovascularization within 3 to 4 days. Like rho/VEGF mice, the neovascularization originated from the deep capillary bed of the retina, but it was more extensive and caused outer retinal folds followed by total retinal detachment. Real-time polymerase chain reaction and enzyme-linked immunosorbent assay demonstrated that the mice with inducible expression of VEGF that developed retinal detachment had much higher ocular levels of VEGF mRNA and protein compared to rho/VEGF mice that manifest a much milder phenotype. These data demonstrate that regardless of developmental stage of the vascular bed, increased expression of VEGF in the retina is sufficient to cause neovascularization, and high levels of expression cause severe neovascularization and traction retinal detachment. Mice with inducible expression of VEGF in the retina provide a valuable new model of ocular neovascularization.

Collaboration


Dive into the Donald J. Zack's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiang Qian

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Karl J. Wahlin

University of California

View shared research outputs
Top Co-Authors

Avatar

Cynthia Berlinicke

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Shannath L. Merbs

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Noriko Esumi

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhiyong Yang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Jun Wan

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Valentin M. Sluch

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge