Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald Johann is active.

Publication


Featured researches published by Donald Johann.


Blood | 2014

Jumping translocations of 1q12 in multiple myeloma: a novel mechanism for deletion of 17p in cytogenetically defined high-risk disease

Jeffrey R. Sawyer; Erming Tian; Christoph Heuck; Joshua Epstein; Donald Johann; Charles M. Swanson; Janet L. Lukacs; Marian Johnson; Regina Lichti Binz; Angela Boast; Gael Sammartino; Saad Z Usmani; Maurizio Zangari; Sarah Waheed; Frits van Rhee; Bart Barlogie

Multiple myeloma (MM) is a B-cell malignancy driven in part by increasing copy number alterations (CNAs) during disease progression. Prognostically significant CNAs accumulate during clonal evolution and include gains of 1q21 and deletions of 17p, among others. Unfortunately, the mechanisms underlying the accumulation of CNAs and resulting subclonal heterogeneity in high-risk MM are poorly understood. To investigate the impact of jumping translocations of 1q12 (JT1q12) on receptor chromosomes (RCs) and subsequent clonal evolution, we analyzed specimens from 86 patients selected for unbalanced 1q12 aberrations by G-banding. Utilizing spectral karyotyping and locus-specific fluorescence in situ hybridization, we identified 10 patients with unexpected focal amplifications of an RC that subsequently translocated as part of a sequential JT1q12 to one or more additional RCs. Four patients exhibited amplification and translocation of 8q24 (MYC), 3 showed amplification of 16q11, and 1 each displayed amplification of 18q21.3 (BCL2), 18q23, or 4p16 (FGFR3). Unexpectedly, in 6 of 14 patients with the combination of the t(4;14) and deletion of 17p, we identified the loss of 17p as resulting from a JT1q12. Here, we provide evidence that the JT1q12 is a mechanism for the simultaneous gain of 1q21 and deletion of 17p in cytogenetically defined high-risk disease.


Blood | 2015

Evidence of an epigenetic origin for high-risk 1q21 copy number aberrations in multiple myeloma.

Jeffrey R. Sawyer; Erming Tian; Christoph Heuck; Donald Johann; Joshua Epstein; Charles M. Swanson; Janet L. Lukacs; Regina Lichti Binz; Marian Johnson; Gael Sammartino; Maurizio Zangari; Faith E. Davies; Frits van Rhee; Gareth J. Morgan; Bart Barlogie

Multiple myeloma is a B-cell malignancy stratified in part by cytogenetic abnormalities, including the high-risk copy number aberrations (CNAs) of +1q21 and 17p(-). To investigate the relationship between 1q21 CNAs and DNA hypomethylation of the 1q12 pericentromeric heterochromatin, we treated in vitro peripheral blood cultures of 5 patients with balanced constitutional rearrangements of 1q12 and 5 controls with the hypomethylating agent 5-azacytidine. Using G-banding, fluorescence in situ hybridization, and spectral karyotyping, we identified structural aberrations and copy number gains of 1q21 in the treated cells similar to those found in patients with cytogenetically defined high-risk disease. Aberrations included 1q12 triradials, amplifications of regions juxtaposed to 1q12, and jumping translocations 1q12. Strikingly, all 5 patients with constitutional 1q12 rearrangements showed amplifications on the derivative chromosomes distal to the inverted or translocated 1q12 region, including MYCN in 1 case. At the same time, no amplification of the 1q21 region was found when the 1q12 region was inverted or absent. These findings provide evidence that the hypomethylation of the 1q12 region can potentially amplify any genomic region juxtaposed to it and mimic CNAs found in the bone marrow of patients with high-risk disease.


BMC Bioinformatics | 2013

Towards the integration, annotation and association of historical microarray experiments with RNA-seq.

Shweta S. Chavan; Michael Bauer; Erich Allen Peterson; Christoph Heuck; Donald Johann

BackgroundTranscriptome analysis by microarrays has produced important advances in biomedicine. For instance in multiple myeloma (MM), microarray approaches led to the development of an effective disease subtyping via cluster assignment, and a 70 gene risk score. Both enabled an improved molecular understanding of MM, and have provided prognostic information for the purposes of clinical management. Many researchers are now transitioning to Next Generation Sequencing (NGS) approaches and RNA-seq in particular, due to its discovery-based nature, improved sensitivity, and dynamic range. Additionally, RNA-seq allows for the analysis of gene isoforms, splice variants, and novel gene fusions. Given the voluminous amounts of historical microarray data, there is now a need to associate and integrate microarray and RNA-seq data via advanced bioinformatic approaches.MethodsCustom software was developed following a model-view-controller (MVC) approach to integrate Affymetrix probe set-IDs, and gene annotation information from a variety of sources. The tool/approach employs an assortment of strategies to integrate, cross reference, and associate microarray and RNA-seq datasets.ResultsOutput from a variety of transcriptome reconstruction and quantitation tools (e.g., Cufflinks) can be directly integrated, and/or associated with Affymetrix probe set data, as well as necessary gene identifiers and/or symbols from a diversity of sources. Strategies are employed to maximize the annotation and cross referencing process. Custom gene sets (e.g., MM 70 risk score (GEP-70)) can be specified, and the tool can be directly assimilated into an RNA-seq pipeline.ConclusionA novel bioinformatic approach to aid in the facilitation of both annotation and association of historic microarray data, in conjunction with richer RNA-seq data, is now assisting with the study of MM cancer biology.


Haematologica | 2013

Metronomic therapy is an effective salvage treatment for heavily pre-treated relapsed/refractory multiple myeloma

Xenofon Papanikolaou; Jackie Szymonifka; Adam Rosenthal; Christoph Heuck; Alan Mitchell; Donald Johann; Jason Keller; Sarah Waheed; Saad Z Usmani; Frits van Rhee; Clyde Bailey; Nathan Petty; Antje Hoering; John Crowley; Bart Barlogie

Relapsed/refractory multiple myeloma represents a major challenge in multiple myeloma therapy. For patients with relapsed/refractory multiple myeloma, we developed a treatment schema of metronomically scheduled drug therapy. We identified 186 patients who had been treated with metronomic therapy between March 2004 and January 2012 with a median follow up of 24.2 months. Median age was 61 years (range 36–83). Median number of prior therapies was 14 (range 1–51). Median number of completed metronomic therapy cycles was 1 (range 1–5), while 45 of 186 (25%) received 2 or more cycles. Responses included complete remission in 11 of 186 patients (6%), very good partial remission in 12 of 186 (7%), partial remission in 65 of 179 (36%), and minimal response in 29 of 186 (16%), for an overall response rate of 63% (117 of 186). Median overall survival and progression-free survival were 11.2 and 3.6 months, respectively. Hematologic toxicity grading was problematic as 146 of 186 (78%) of patients presented with at least grade 2 thrombocytopenia within 90 days prior to starting metronomic therapy. Grade 4 leukopenia, anemia, and/or thrombocytopenia following metronomic therapy occurred in 108 of 186 (58%), 12 of 186 (6%), and 147 of 186 (79%) patients, respectively. Incidence of grade 3–4 neutropenic fever was 4 of 186 (2%). Most patients (177 of 186, 95%) were treated in an outpatient unit and secondary admissions due to regimen-related toxicity occurred in 37 of 186 (20%). Treatment-related mortality was evident in 2 of 186 (1%). In conclusion, metronomic therapy is an effective late salvage treatment in relapsed/refractory multiple myeloma, with a high overall response rate and a favorable toxicity profile.


BMC Bioinformatics | 2014

Revealing the inherent heterogeneity of human malignancies by variant consensus strategies coupled with cancer clonal analysis

Erich Allen Peterson; Shweta S. Chavan; Michael Bauer; Christoph Heuck; Donald Johann

Tumors are heterogeneous in composition. They are composed of cancer cells proper, along with stromal elements that collectively form a microenvironment, all of which are necessary to nurture the malignant process. In addition, many of the stromal cells are modified to support the unique needs of the malignant state. Tumors are composed of a variety of clones or subpopulations of cancer cells, which may differ in karyotype, growth rate, expression of cell surface markers, sensitivity to therapeutics, etc. New tools and methods to provide an improved understanding of tumor clonal architecture are needed to guide therapy.The subclonal structure and transcription status of underlying somatic mutations reveal the trajectory of tumor progression in patients with cancer. Approaching the analysis of tumors to reveal clonal complexity in a quantitative manner should facilitate better characterization and therapeutic assignments. The challenge is the interpretation of massive amounts of data from next generation sequencing (NGS) experiments to find what is truly meaningful for improving the understanding of basic cancer biology, as well as therapeutic assignments and outcomes. To meet this need, a methodology named CloneViz was developed and utilized for the identification of serial clonal mutations.Whole exome sequencing (WES) on an Illumina HiSeq 2500 was performed on paired tumor and normal samples from a Multiple Myeloma (MM) patient at presentation, then first and second relapse. Following alignment, a consensus strategy for variant selection was employed along with computational linkage to a formal tumor clonality analysis based on visualization and quantitative methods.


BMC Bioinformatics | 2014

Leveraging the new with the old: providing a framework for the integration of historic microarray studies with next generation sequencing

Michael Bauer; Shweta S. Chavan; Erich Allen Peterson; Christoph Heuck; Donald Johann

Next Generation Sequencing (NGS) methods are rapidly providing remarkable advances in our ability to study the molecular profiles of human cancers. However, the scientific discovery offered by NGS also includes challenges concerning the interpretation of large and non-trivial experimental results. This task is potentially further complicated when a multitude of molecular profiling modalities are available, with the goal of a more integrative and comprehensive analysis of the cancer biology.Microarray transcriptome analyses have resulted in important advances in both the scientific and clinical domains of biomedicine. Importantly, as technology advances, it is critical to leverage what has been gained from historic approaches (e.g., microarrays) with new approaches (NGS). In this regard, necessity dictated a need to utilize and leverage the many years of historical microarray data with new NGS approaches. This is especially important since NGS approaches are now entering clinical medicine. For instance, NGS-based comprehensive analysis of certain cancers has already helped to uncover specific mutations that contribute to the malignant process, identify new therapeutic targets, and improve opportunities for choosing the best treatment for an individual patient.A suite of custom software tools have been developed to rapidly integrate, explore, discover and validate molecular profiling data from the NGS modalities of Whole Exome Sequencing (WES) and RNA-seq with each other, as well as with historical microarray and salient clinical datasets. Importantly, our approach is independent of any particular type of NGS suite(s) or cancer types. This novel bioinformatic framework is now assisting with the scientific and clinical management of patients with multiple myeloma.


Experimental Biology and Medicine | 2018

Liquid biopsy and its role in an advanced clinical trial for lung cancer

Donald Johann; Mathew Steliga; Ik Jae Shin; Donghoon Yoon; Konstantinos Arnaoutakis; Laura F. Hutchins; Meeiyueh Liu; Jason Liem; Karl Walker; Andy Pereira; Mary Yang; Susanne K. Jeffus; Erich Allen Peterson; Joshua Xu

Liquid biopsy methodologies, for the purpose of plasma genotyping of cell-free DNA (cfDNA) of solid tumors, are a new class of novel molecular assays. Such assays are rapidly entering the clinical sphere of research-based monitoring in translational oncology, especially for thoracic malignancies. Potential applications for these blood-based cfDNA assays include: (i) initial diagnosis, (ii) response to therapy and follow-up, (iii) tumor evolution, and (iv) minimal residual disease evaluation. Precision medicine will benefit from cutting-edge molecular diagnostics, especially regarding treatment decisions in the adjuvant setting, where avoiding over-treatment and unnecessary toxicity are paramount. The use of innovative genetic analysis techniques on individual patient tumor samples is being pursued in several advanced clinical trials. Rather than using a categorical treatment plan, the next critical step of therapeutic decision making is providing the “right” cancer therapy for an individual patient, including correct dose and timeframe based on the molecular analysis of the tumor in question. Per the 21st Century Cures Act, innovative clinical trials are integral for biomarker and drug development. This will include advanced clinical trials utilizing: (i) innovative assays, (ii) molecular profiling with cutting-edge bioinformatics, and (iii) clinically relevant animal or tissue models. In this paper, a mini-review addresses state-of-the-art liquid biopsy approaches. Additionally, an on-going advanced clinical trial for lung cancer with novelty through synergizing liquid biopsies, co-clinical trials, and advanced bioinformatics is also presented. Impact statement Liquid biopsy technology is providing a new source for cancer biomarkers, and adds new dimensions in advanced clinical trials. Utilizing a non-invasive routine blood draw, the liquid biopsy provides abilities to address perplexing issues of tumor tissue heterogeneity by identifying mutations in both primary and metastatic lesions. Regarding the assessment of response to cancer therapy, the liquid biopsy is not ready to replace medical imaging, but adds critical new information; for instance, through a temporal assessment of quantitative circulating tumor DNA (ctDNA) assay results, and importantly, the ability to monitor for signs of resistance, via emerging clones. Adjuvant therapy may soon be considered based on a quantitative cfDNA assay. As sensitivity and specificity of the technology continue to progress, cancer screening and prevention will improve and save countless lives by finding the cancer early, so that a routine surgery may be all that is required for a definitive cure.


Archive | 2017

Preparation and Immunoaffinity Depletion of Fresh Frozen Tissue Homogenates for Mass Spectrometry-Based Proteomics in the Context of Drug Target/Biomarker Discovery

DaRue A. Prieto; King C. Chan; Donald Johann; Xiaoying Ye; Gordon Whitely; Josip Blonder

The discovery of novel drug targets and biomarkers via mass spectrometry (MS)-based proteomic analysis of clinical specimens has proven to be challenging. The wide dynamic range of protein concentration in clinical specimens and the high background/noise originating from highly abundant proteins in tissue homogenates and serum/plasma encompass two major analytical obstacles. Immunoaffinity depletion of highly abundant blood-derived proteins from serum/plasma is a well-established approach adopted by numerous researchers; however, the utilization of this technique for immunodepletion of tissue homogenates obtained from fresh frozen clinical specimens is lacking. We first developed immunoaffinity depletion of highly abundant blood-derived proteins from tissue homogenates, using renal cell carcinoma as a model disease, and followed this study by applying it to different tissue types. Tissue homogenate immunoaffinity depletion of highly abundant proteins may be equally important as is the recognized need for depletion of serum/plasma, enabling more sensitive MS-based discovery of novel drug targets, and/or clinical biomarkers from complex clinical samples. Provided is a detailed protocol designed to guide the researcher through the preparation and immunoaffinity depletion of fresh frozen tissue homogenates for two-dimensional liquid chromatography, tandem mass spectrometry (2D-LC-MS/MS)-based molecular profiling of tissue specimens in the context of drug target and/or biomarker discovery.


Archive | 2018

Protocol for the Analysis of Laser Capture Microdissected Fresh-Frozen Tissue Homogenates by Silver-Stained 1D SDS-PAGE

DaRue A. Prieto; Gordon Whitely; Donald Johann; Josip Blonder

The heterogeneity present in solid tumors adds significant difficulty to scientific analysis and improved understanding. Fundamentally, solid tumor formation consists of cancer cells proper along with stromal elements. The burgeoning malignant process is dependent upon modified stromal elements. Collectively, the stroma forms an essential microenvironment, which is indispensable for the survival and growth of the malignant neoplasm. This cellular heterogeneity makes molecular profiling of solid tumors via mass spectrometry (MS)-based proteomics a daunting task. Laser capture microdissection (LCM) is commonly used to obtain distinct histological cell types (e.g., tumor parenchymal cells, stromal cells) from tumor tissue and attempt to address the tumor heterogeneity interference with downstream liquid chromatography (LC) MS analysis. To provide optimal LC-MS analysis of micro-scale and/or nano-scale tissue sections, we modified and optimized a silver-stained one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (1D-SDS-PAGE) protocol for the LC-MS analysis of LCM-procured fresh-frozen tissue specimens. Presented is a detailed in-gel digestion protocol adjusted specifically to maximize the proteome coverage of amount-limited LCM samples, and facilitate in-depth molecular profiling. Following LCM, targeted tissue sections are further fractionated using silver-stained 1D-SDS-PAGE to resolve and visualize tissue proteins prior to in-gel digestion and subsequent LC-MS analysis.


Blood | 2013

Risk factors for MDS and acute leukemia following total therapy 2 and 3 for multiple myeloma

Saad Z Usmani; Jeffrey R. Sawyer; Adam Rosenthal; Michele Cottler-Fox; Joshua Epstein; Shmuel Yaccoby; Rachael Sexton; Antje Hoering; Zeba N. Singh; Christoph Heuck; Sarah Waheed; Nabeel Chauhan; Donald Johann; Al-Ola Abdallah; Jameel Muzaffar; Nathan Petty; Clyde Bailey; John Crowley; Frits van Rhee; Bart Barlogie

Collaboration


Dive into the Donald Johann's collaboration.

Top Co-Authors

Avatar

Christoph Heuck

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Bart Barlogie

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Frits van Rhee

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Joshua Epstein

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Sarah Waheed

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Gareth J. Morgan

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Maurizio Zangari

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Shweta S. Chavan

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Erich Allen Peterson

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Faith E. Davies

University of Arkansas for Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge