Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald M. Bers is active.

Publication


Featured researches published by Donald M. Bers.


Biochimica et Biophysica Acta | 1987

The effect of temperature and ionic strength on the apparent Ca-affinity of EGTA and the analogous Ca-chelators BAPTA and dibromo-BAPTA

Simon M. Harrison; Donald M. Bers

The apparent calcium association constants (KCa) of ethylene glycol bis(beta-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA), 1,2-bis(o-aminophenoxy)ethane-N,N,N,N-tetraacetic acid (BAPTA) and 1,2-bis 2-bis(o-amino-5-bromophenoxy)ethane-N,N,N,N-tetraacetic acid (dibromo-BAPTA) were measured using the method described by Bers (Am. J. Physiol. 242 (1982) C404-408). The purity of the three ligands determined from the chi-intercept of Scatchard plots were 96.3%, 79.0% and 97.3% for EGTA, BAPTA and dibromo-BAPTA, respectively. The impurity of BAPTA was found to be water by drying several samples to constant weight. Increasing temperature from 1 to 36 degrees C led to an increase in KCa which was of similar magnitude for the three ligands. Increasing ionic strength from 0.104 to 0.304 M led to a reduction of KCa in all cases, though EGTA was affected much less than BAPTA or dibromo-BAPTA. Experimental results were compared with values of KCa calculated from the individual association constants of the ligands for calcium and protons which were modified for the experimental conditions using the Debye-Hückel limiting law and the Vant Hoff Isochore to correct for ionic strength and temperature, respectively. The experimental values of KCa of EGTA agree well with those in the literature and with the calculated values. Good agreement was also found between the experimental and calculated values of KCa for the temperature and ionic strength dependence of BAPTA and dibromo-BAPTA.


Circulation Research | 1989

Relaxation of rabbit ventricular muscle by Na-Ca exchange and sarcoplasmic reticulum calcium pump. Ryanodine and voltage sensitivity.

Donald M. Bers; J. H B Bridge

We studied relaxation during rapid rewarming of rabbit ventricular muscles that had been activated by rapid cooling. Rewarming from 1 degree to 30 degrees C (in less than 0.5 second) activates mechanisms that contribute to the reduction of intracellular calcium concentration and thus relaxation (e.g., sarcoplasmic reticulum [SR] calcium pump and sarcolemmal Na-Ca exchange and calcium pump). Rapid rewarming in normal Tyrodes solution induces relaxation with a half-time (t1/2) of 217 +/- 14 msec (mean +/- SEM). During cold exposure, changing the superfusate to a sodium-free, calcium-free medium with 2 mM CoCl2 (to eliminate Na-Ca exchange) slightly slows relaxation upon rewarming in the same medium (t1/2 = 279 +/- 44 msec). Addition of 10 mM caffeine (which prevents SR calcium sequestration) to normal Tyrodes solution during cold superfusion slows relaxation somewhat more (t1/2 = 376 +/- 31 msec) than sodium-free, calcium-free solution. However, if both interventions are combined (sodium-free + caffeine) during the cold exposure and rewarming, the relaxation is greatly slowed (t1/2 = 2,580 +/- 810 msec). These results suggest that either the SR calcium pump or, to a lesser extent, sarcolemmal Na-Ca exchange can produce rapid relaxation, but if both systems are blocked, relaxation is very slow. If muscles are equilibrated with 500 nM ryanodine before cooling, relaxation upon rewarming is not greatly slowed (t1/2 = 266 +/- 37 msec) even if sodium-free, calcium-free solution is applied during the cold and rewarming phases (t1/2 = 305 +/- 66 msec). This result suggests that ryanodine does not prevent the SR from accumulating calcium to induce relaxation.(ABSTRACT TRUNCATED AT 250 WORDS)


Circulation Research | 1987

Inotropic response to hypothermia and the temperature-dependence of ryanodine action in isolated rabbit and rat ventricular muscle: implications for excitation-contraction coupling.

M J Shattock; Donald M. Bers

We have used the sarcoplasmic reticulum (SR) inhibitor ryanodine to assess the contribution of the SR to the increase in twitch tension seen on cooling the mammalian myocardium. To select a suitable concentration of ryanodine, i.e., one that will exert a maximal effect at all temperatures studied, concentration-response curves for ryanodine action were constructed at 37°, 29°, and 23°C in ventricular muscle from rabbit and rat. Using a concentration of ryanodine (1 μM) that exerted a maximal effect at all temperatures studied, the ability of ryanodine to inhibit SR function at 37°, 29°, and 23°C was then confirmed by using rapid cooling contractures (RCCs) to provide an indirect assessment of the SR calcium content. To estimate the rest decay of the SR calcium content in the absence and presence of ryanodine (1 μM), RCCs were initiated after a range of rest intervals (0.3-300 seconds) in rabbit muscles maintained at 37°, 29°, or 23°C. In the absence of ryanodine, low temperatures elevated RCCs at all rest intervals studied. In the presence of ryanodine, RCCs were only seen at rest intervals shorter than 2.0 seconds, even at 23°C, the lowest temperature studied. Thus, even at 23°C, ryanodine appears to be effective at inhibiting SR calcium release in muscles stimulated at 0.5 Hz (i.e., after 2 seconds rest). Therefore, using this concentration of ryanodine (1 μM) and a stimulation rate of 0.5 Hz, we have investigated the contribution of the SR to the positive inotropic response to hypothermia. Under these conditions, the positive inotropic response to cooling in rabbit ventricle was almost unaffected by the inhibition of the SR with ryanodine. In rat ventricle, a tissue in which SR calcium release may dominate excitation-contraction (EC) coupling, the inotropic response to hypothermia was still observed, although developed tension was strongly depressed at all temperatures. These results suggest that a change in SR function is not the principal mediator of the large (400-500%) increase in force associated with cooling mammalian ventricular muscle from 37±to 25°C. The ryanodine-sensitive fraction of tension development was greatest at 37°C, suggesting that the relative contribution of the SR to tension development in rabbit ventricle is reduced at temperatures below 37°C. We investigated the influence of hypothermia on ryanodine-induced changes in action potential in both rabbit and rat ventricle, and the decline in the efficacy of ryanodine at low temperatures cannot be directly attributed to differential electrophysiologic effects at the different temperatures.


Circulation Research | 1993

Sarcoplasmic reticulum Ca2+ uptake and thapsigargin sensitivity in permeabilized rabbit and rat ventricular myocytes.

Leif Hove-Madsen; Donald M. Bers

Ca2+ uptake by the sarcoplasmic reticulum (SR) and free [Ca2+] were measured simultaneously with indo 1 and a Ca(2+)-selective minielectrode in suspensions of permeabilized rabbit or rat ventricular myocytes (approximately 10 mg/mL protein). In the presence of 25 mumol/L ruthenium red and 10 mmol/L oxalate, the Km for Ca2+ uptake by the SR was approximately 250 nmol/L in rabbit and rat ventricular myocytes. The maximal Ca2+ uptake rate was 2.4 times higher in rat than in rabbit. Addition of 5 nmol thapsigargin (TG) per milligram cell protein abolished Ca2+ uptake completely in both species. The [TG] necessary for a half-maximal reduction of the uptake rate (K1/2) was 55 pmol/mg cell protein for rabbit and 390 pmol/mg cell protein for rat. Assuming that the number of pump sites is two times the concentration of TG necessary to inhibit half of the Ca2+ pump activity (ie, the TG affinity is very high), the density of pump sites is 7.7 mumol/kg wet wt for rabbit and 54.6 mumol/kg wet wt for rat. Despite a fivefold decrease of the Ca2+ uptake rate by a submaximal [TG], the permeabilized myocytes were still able to lower the free [Ca2+] to < 150 nmol/L from a peak value > 10 mumol/L. The relative inhibition of Ca2+ uptake by TG did not depend on the free [Ca2+]. Addition of more than 5 nmol TG per milligram cell protein abolished Ca2+ uptake by the SR completely in < 15 seconds and reduced the uptake rate by 95% in 5 seconds.(ABSTRACT TRUNCATED AT 250 WORDS)


Biophysical Journal | 1992

Indo-1 binding to protein in permeabilized ventricular myocytes alters its spectral and Ca binding properties

Leif Hove-Madsen; Donald M. Bers

We have examined the binding of the fluorescent Ca indicator indo-1 to cellular protein in permeabilized ventricular myocytes and also to soluble and particulate myocyte protein. Using either a filtration technique or equilibrium dialysis, and conditions similar to those in a cardiac myocyte patch clamped with 100 microM indo-1 in the patch pipette, we found that 72% of the total indo-1 was bound to myocyte protein at a protein concentration of 100 mg/ml. This corresponds to a binding of 3.8 +/- 0.5 nmol indo-1/mg protein. Separation of the myocyte protein into a soluble and a particulate fraction showed that 63% of the bound indo-1 was bound to soluble protein, corresponding to a binding of 3.22 +/- 0.99 nmol/mg, whereas 37% of the bound indo-1 was bound to particulate protein (0.85 +/- 0.14 nmol/mg) at a low [Ca] (pCa approximately 9). Binding of indo-1 in permeabilized myocytes was approximately 60% higher at a saturating Ca concentration (pCa = 3), than under Ca free conditions (1 mM EGTA). Simultaneous measurements of free [Ca] with a Ca selective electrode and indo-1 fluorescence showed that, the dissociation constant (Kd) for Ca was increased 4-5 fold in the presence of permeabilized myocytes as compared to the value obtained in vitro. In agreement with the binding experiments we estimate that the true Kd and the apparent Kd (using ratiometric measurements) for Ca binding to indo-1 are increased approximately four fold, at a myocyte protein concentration of 100 mg/ml.


Journal of Molecular and Cellular Cardiology | 1988

Can Ca entry via Na−Ca exchange directly activate cardiac muscle contraction?

Donald M. Bers; David M. Christensen; Trung X. Nguyen

Developed twitch tension and action potentials were recorded in rabbit ventricular muscle in physiological saline at 30 degrees C stimulated at 0.5 Hz. Addition of 5 microM nifedipine to block Ca entry via Ca channels almost abolished twitches (to 2.5 +/- 0.7%, S.E.M., n = 10 of control). This suggests that under normal conditions Ca entry via Na-Ca exchange is insufficient to activate contractions. However, when muscles are first exposed to 4 microM acetylstrophanthidin to elevate [Na]i the same exposure to nifedipine only partially suppresses twitches (to 59 +/- 12% of the original control). This suggests that when [Na]i is elevated, Ca entry via the Na-Ca exchange may be adequate to partially activate contraction. From this result it is not clear whether Ca entry via Na-Ca exchange is sufficient to activate contraction directly or whether sarcoplasmic reticulum (SR) Ca release is required. When these experiments were carried out in the presence of 5 to 10 mM caffeine or 100 nM ryanodine similar results were obtained. That is, nifedipine still abolished contractions in the presence of caffeine or ryanodine (to 3.8 +/- 0.3% and 1.3 +/- 0.4%, respectively), but only partially inhibited contractions in the presence of caffeine + acetylstrophanthidin (to 21 +/- 5%) or ryanodine + acetylstrophanthidin (10 +/- 2%). Thus, it appears that even in the absence of a functional SR and with Ca current blocked, Na-Ca exchange might bring sufficient Ca into the cell to activate appreciable contractions, but only when [Na]i is elevated. Action potential duration is decreased by nifedipine and acetylstrophanthidin and is further decreased when nifedipine is added on top of acetylstrophanthidin. If this Ca entry is by an electrogenic 3 Na: 1 Ca exchange, Ca entry will be favored at more positive membrane potentials. If the action potential were not so abbreviated with these drugs, Na-Ca exchange might bring in more Ca and activate additional tension.


Circulation Research | 1991

Dihydropyridine receptors are primarily functional L-type calcium channels in rabbit ventricular myocytes.

W. Y. W. Lew; L. V. Hryshko; Donald M. Bers

We measured [3H]PN200-110 binding and patch-clamp currents in rabbit ventricular myocytes to determine if there is a disparity between the density of dihydropyridine-specific receptors and functional L-type calcium channels, as has been reported for skeletal muscle. The dihydropyridine receptor density was 74.7 +/- 4.2 fmol/mg protein (mean +/- SEM, Kd = 1.73 +/- 0.29 nM, n = 6) in ventricular homogenates and 147 +/- 6 fmol/mg protein (Kd = 1.15 +/- 0.16 nM, n = 4) in myocytes. Ventricular homogenates contained 121 +/- 9 mg protein/g wet wt (n = 7). These values were used to calculate a dihydropyridine receptor density of 12.9 dihydropyridine sites/micron2 for ventricular homogenates and 14.8 dihydropyridine sites/micron2 for myocytes. The number of functional L-type calcium channels (N) was calculated from measurements of whole-cell current (I), single-channel current (i), and open probability (po), where N = I/(i x po). We measured sodium current through calcium channels (I(ns)) to avoid calcium-induced inactivation. Whole-cell (I(ns)) and single-channel (i(ns) and po) measurements were obtained under similar ionic conditions at a test potential of -20 mV. In six cells, the peak I(ns) was approximately 105 pA/pF. The single-channel conductance was 40.8 +/- 2.6 pS (n = 12), and i(ns) at -20 mV was 1.96 pA. The mean po at -20 mV was 0.030 +/- 0.002 in 16 patches in which only a single channel was evident. The calculated density of functional L-type calcium channels was approximately 18 channels/micron2.(ABSTRACT TRUNCATED AT 250 WORDS)


Annals of the New York Academy of Sciences | 1991

Species Differences and the Role of Sodium‐Calcium Exchange in Cardiac Muscle Relaxationa

Donald M. Bers

During normal relaxation in rabbit, guinea-pig, and rat ventricular muscle, the Na-Ca exchange system competes with the SR Ca pump, with the former being responsible for about 20-30% of the Ca removal from the cytoplasm. Ca extrusion via Na-Ca exchange is Em-sensitive, whereas Ca uptake by the SR is not. Neither the sarcolemmal Ca-ATPase pump nor mitochondrial Ca uptake appear to contribute significantly to the decline of [Ca]i during relaxation. Furthermore, the diastolic efflux of Ca from cardiac muscle cells appears to be primarily attributable to Na-Ca exchange and not the sarcolemmal Ca-ATPase pump. In rabbit ventricle Ca entry via Na-Ca exchange is favored thermodynamically during much of a normal twitch contraction and Ca extrusion occurs primarily between beats. In rat ventricle Ca efflux via Na-Ca exchange occurs during the contraction and net Ca influx may occur between beats. This fundamental difference in Ca fluxes during the cardiac cycle in rat versus rabbit ventricle may be a simple consequence of the shorter action potential duration and higher aNai in rat ventricle (due to the effects of Em and [Na] and [Ca] gradients on Na-Ca exchange).


Biophysical Journal | 1991

Diffusion around a cardiac calcium channel and the role of surface bound calcium

Donald M. Bers; A. Peskoff

The diffusion of Ca as it converges to the external mouth of a Ca channel is examined. Diffusional limitation on Ca ions entering Ca channels during current flow, cause local extracellular Ca depletions. Such extracellular Ca depletions have been reported in cardiac muscle. The cardiac sarcolemma has a large number of low-affinity Ca binding sites that can buffer these local Ca depletions. For a hemisphere of extracellular space (of radius less than 0.33 microns) centered on the external mouth of a Ca channel the amount of Ca bound at the membrane surface exceeds that which is free within the associated hemisphere. The ratio of bound Ca/free Ca increases as r decreases, such that the [Ca] nearest the Ca channel is the most strongly buffered by sarcolemmal bound Ca. It is demonstrated that Ca ions coming from these sarcolemmal Ca binding sites contribute quantitatively to the integrated Ca current. The electric field generated by the local depletion of Ca near the channel mouth has little impact on the extent of Ca depletion, but if an additional electric field exists at the mouth of the channel, Ca depletion can be significantly altered. Other low-affinity Ca binding sites in the interstitium may also contribute to the buffering of extracellular Ca. The complex geometry of the extracellular space in cardiac muscle (e.g., transverse tubules and restrictions of extracellular space between cells) increases both the predicted Ca depletions (in the absence of binding) and the bound/free ratio. Thus, the impact of this surface Ca binding is greatly increased. By considering arrays of Ca channels in transverse tubules or in parallel planes (e.g., membranes of neighboring cells), extracellular Ca depletions are predicted which agree with those measured experimentally. Membrane Ca binding may also be expected to buffer increases in [Ca] around the inner mouth of Ca channels. It is demonstrated that in the absence of other intracellular systems most of the Ca entering the cell via Ca channels might be expected to be bound to the inner sarcolemmal surface. It is concluded that surface Ca binding may have a substantial impact on the processes of extracellular Ca depletion (and intracellular Ca accumulation).


Journal of Molecular and Cellular Cardiology | 1990

Functional interconversion of rest decay and ryanodine effects in rabbit and rat ventricle depends on Na Ca exchange

Donald M. Bers; David M. Christensen

Rapid cooling contractures were used to assess changes in sarcoplasmic reticulum (SR) Ca content in isolated rabbit and rat ventricular muscle during rest, with altered transsarcolemmal [Na] and [Ca] gradients and in the presence and absence of 100 nM ryanodine. In rabbit there is normally a rest-duration dependent decline in SR Ca content (rest decay), whereas in rat there is a short-term increase in SR Ca content (rest potentiation) and little evidence of rest decay. Ryanodine greatly accelerates the rate of rest decay in rabbit, depleting the SR of Ca in approximately 1 s, whereas in rat, ryanodine does not appear to drain the SR even after a 10 min rest. Elevation of intracellular Na activity in rabbit (by Na-pump inhibition) to a level similar to that measured in control rat during rest (Shattock and Bers, Am. F. Physiol., 256: C813-C822, 1989) makes rest-dependent changes of SR Ca content in these two tissues similar. The rest decay in rabbit in the presence of ryanodine is also markedly slowed after Na-pump inhibition. In rat, reduction of [Ca]0 allows rest decay to occur (+/- ryanodine), but this rest decay can be largely prevented by simultaneous reduction of [Na]o (to maintain [Na]3/[ Ca] constant) which serves to keep the thermodynamic driving force on a 3:1 Na/Ca exchange constant. We conclude that the process of rest decay and rest potentiation in both rabbit and rat ventricle depends on the sarcolemmal Na/Ca exchange. Furthermore, these species can be functionally interconverted by manipulation of the [Na] and [Ca] gradients. The ability of ryanodine to deplete the SR of Ca also depends critically on other transport systems (particularly Na/Ca exchange) to remove Ca from the cytoplasm.

Collaboration


Dive into the Donald M. Bers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Peskoff

University of California

View shared research outputs
Top Co-Authors

Avatar

Arthur Peskoff

University of California

View shared research outputs
Top Co-Authors

Avatar

J. H B Bridge

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge