Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald M. Caspary is active.

Publication


Featured researches published by Donald M. Caspary.


The Journal of Neuroscience | 2010

Ringing Ears: The Neuroscience of Tinnitus

Larry E. Roberts; Jos J. Eggermont; Donald M. Caspary; Susan E. Shore; Jennifer R. Melcher; James A. Kaltenbach

Tinnitus is a phantom sound (ringing of the ears) that affects quality of life for millions around the world and is associated in most cases with hearing impairment. This symposium will consider evidence that deafferentation of tonotopically organized central auditory structures leads to increased neuron spontaneous firing rates and neural synchrony in the hearing loss region. This region covers the frequency spectrum of tinnitus sounds, which are optimally suppressed following exposure to band-limited noise covering the same frequencies. Cross-modal compensations in subcortical structures may contribute to tinnitus and its modulation by jaw-clenching and eye movements. Yet many older individuals with impaired hearing do not have tinnitus, possibly because age-related changes in inhibitory circuits are better preserved. A brain network involving limbic and other nonauditory regions is active in tinnitus and may be driven when spectrotemporal information conveyed by the damaged ear does not match that predicted by central auditory processing.


The Journal of Experimental Biology | 2008

Inhibitory Neurotransmission, Plasticity and Aging in the Mammalian Central Auditory System

Donald M. Caspary; Lynne Ling; Jeremy G. Turner; Larry F. Hughes

SUMMARY Aging and acoustic trauma may result in partial peripheral deafferentation in the central auditory pathway of the mammalian brain. In accord with homeostatic plasticity, loss of sensory input results in a change in pre- and postsynaptic GABAergic and glycinergic inhibitory neurotransmission. As seen in development, age-related changes may be activity dependent. Age-related presynaptic changes in the cochlear nucleus include reduced glycine levels, while in the auditory midbrain and cortex, GABA synthesis and release are altered. Presumably, in response to age-related decreases in presynaptic release of inhibitory neurotransmitters, there are age-related postsynaptic subunit changes in the composition of the glycine (GlyR) and GABAA (GABAAR) receptors. Age-related changes in the subunit makeup of inhibitory pentameric receptor constructs result in altered pharmacological and physiological responses consistent with a net down-regulation of functional inhibition. Age-related functional changes associated with glycine neurotransmission in dorsal cochlear nucleus (DCN) include altered intensity and temporal coding by DCN projection neurons. Loss of synaptic inhibition in the superior olivary complex (SOC) and the inferior colliculus (IC) likely affect the ability of aged animals to localize sounds in their natural environment. Age-related postsynaptic GABAAR changes in IC and primary auditory cortex (A1) involve changes in the subunit makeup of GABAARs. In turn, these changes cause age-related changes in the pharmacology and response properties of neurons in IC and A1 circuits, which collectively may affect temporal processing and response reliability. Findings of age-related inhibitory changes within mammalian auditory circuits are similar to age and deafferentation plasticity changes observed in other sensory systems. Although few studies have examined sensory aging in the wild, these age-related changes would likely compromise an animals ability to avoid predation or to be a successful predator in their natural environment.


Behavioral Neuroscience | 2006

Gap detection deficits in rats with tinnitus: a potential novel screening tool.

Jeremy G. Turner; Thomas J. Brozoski; Carol A. Bauer; Jennifer L. Parrish; Kristin S. Myers; Larry F. Hughes; Donald M. Caspary

The study describes a novel method for tinnitus screening in rats by use of gap detection reflex procedures. The authors hypothesized that if a background acoustic signal was qualitatively similar to the rats tinnitus, poorer detection of a silent gap in the background would be expected. Rats with prior evidence of tinnitus at 10 kHz (n = 14) exhibited significantly worse gap detection than controls (n = 13) when the gap was embedded in a background similar to their tinnitus. No differences between tinnitus and control rats were found with 16 kHz or broadband noise backgrounds, which helped to rule out explanations related to hearing loss or general performance deficits. The results suggest that gap detection reflex procedures might be effective for rapid tinnitus screening in rats.


Experimental Gerontology | 1995

Central auditory aging: GABA changes in the inferior colliculus

Donald M. Caspary; Joseph C. Milbrandt; Robert H. Helfert

Age-related hearing loss (presbycusis) is a complex state that reflects pathologic changes along the entire auditory neuraxis. Loss of speech understanding, decreased ability to localize sounds, and a decreased ability to detect and extract signals in noise are characteristic problems encountered by the elderly. Central (neural) presbycusis frequently results in a dramatic loss in speech understanding without a parallel change in pure-tone thresholds. In spite of evidence that suggests these deficits cannot be fully explained by peripheral changes alone, few studies have examined the neurochemical basis of central auditory dysfunction in aging. Age-related alterations in neural circuits involved in the processing of acoustic information could reflect changes in the synthesis, degradation, uptake, release, and receptor sensitivity of neurotransmitters, perhaps secondary to cell loss and/or progressive deafferentation. A series of studies designed to test this hypothesis has examined aging in the central auditory system of the F344 rate. Age-related changes associated with GABA neurotransmitter function in an important auditory midbrain structure, the inferior colliculus, have been investigated. These studies found: (1) decreased numbers of GABA immunoreactive neurons; (2) decreased basal levels (concentrations) of GABA; (3) decreased GABA release; (4) decreased glutamic acid decarboxylase activity; (5) decreased GABAB receptor binding; (6) decreased numbers of presynaptic terminals; and (7) subtle GABAA receptor binding changes. Collectively, these age-related changes suggest altered GABA neurotransmitter function in the IC. Identification of specific neurotransmitter changes in structures important in speech processing could eventually lead to the development of pharmacotherapy for selective types of age-related hearing loss.


The Journal of Neuroscience | 1990

Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis

Donald M. Caspary; Ahmad Raza; Ba Lawhorn Armour; J Pippin; Stephen P. Arneric

The present study describes substantial, selective, age-related loss of the putative inhibitory neurotransmitter GABA in the central nucleus of the inferior colliculus (CIC) of rat based on immunocytochemical and neurochemical data. For immunocytochemistry, neurons in the CIC were immunolabeled using an antibody against a GABA conjugate in young adult (2- to 7-month-old) and aged (18- to 29-month-old) Fischer-344 rats. Computer-assisted morphometry was then used to generate maps of GABA- immunoreactive neurons in the CIC. The number of GABA-positive neurons was reduced 36% in the ventrolateral portion of the CIC of aged animals (93 neurons/mm2) compared to their matched young adult cohorts (145 neurons/mm2; p less than 0.01). For neurochemistry, basal and K(+)- evoked release of the endogenous amino acids GABA, glutamate (Glu), aspartate (Asp), and tyrosine (Tyr) from micropunches of the CIC were measured in 8 age-paired animals from the 2 age groups using high- performance liquid chromatography. Overflow of radiolabeled acetylcholine (3H-ACh) was also determined. In both age groups, K(+)- evoked release of GABA, Glu, Asp, and 3H-ACh from CIC punches was significantly enhanced above basal efflux (+200, +215, +163, and +309%, respectively), while Tyr release was unchanged. Evoked release of 3H- ACh and all amino acids except Tyr showed substantial Ca2+ dependence. A significant (p less than 0.05) age-related reduction in both basal (- 35%) and K(+)-stimulated (-42%) efflux of GABA from the CIC was observed. A corresponding decrease in postrelease tissue content of GABA in CIC of aged rats was observed (-30%, p less than 0.05). In contrast, tissue content as well as basal and evoked release of Glu, Asp, Tyr, and 3H-ACh was similar between the 2 age groups. Age-related GABA neurochemical changes described in the CIC were not observed in the release of the other amino acids or 3H-ACh from either the rostral ventrolateral medulla or the somatosensory cortex, 2 brain regions involved in processing non-auditory sensory input. These data support previous findings that GABA, Glu, Asp, and ACh may subserve neurotransmission in the CIC. Additionally, these data provide clear evidence for a pronounced, region- and neurotransmitter-selective, age- related reduction of GABA in the CIC. These findings support the hypothesis that impairment of inhibitory GABAergic neurotransmission in the CIC may contribute to abnormal auditory perception and processing seen in neural presbycusis.


Hearing Research | 1991

Involvement of GABA in acoustically-evoked inhibition in inferior colliculus neurons.

Carl L. Faingold; Cathy A.Boersma Anderson; Donald M. Caspary

Most criteria for establishing GABA as an inhibitory neurotransmitter in the central nucleus of inferior colliculus (ICc) have been satisfied, but the role of GABA in acoustic coding in ICc is not established. The present study examined this issue by evaluating the effects of iontophoretic application of agents that alter activity at GABA receptors on potential forms of acoustically-evoked inhibition in ICc neurons. Application of the GABAA antagonist, bicuculline, selectively blocked the firing reduction at high intensities observed during non-monotonic rate-intensity functions in ICc neurons. Binaural inhibition was selectively blocked by bicuculline and increased by nipecotic acid. Application of GABA, nipecotic acid (GABA uptake inhibitor) and a benzodiazepine (flurazepam), which enhances the action of GABA, increased the duration and intensity of ipsilateral inhibition and response pause, while bicuculline blocked these acoustically-evoked inhibitory events. Offset inhibition was increased by nipecotic acid application and reduced by bicuculline with the appearance of an offset peak. The present data support an important role for GABA as a neurotransmitter, mediating, in part, non-monotonicity, binaural inhibition, response pause and offset inhibition in ICc neurons. Alterations of these GABA-mediated inhibitory phenomena may occur in auditory dysfunctions observed with aging and audiogenic seizures.


Brain Research | 1989

On the role of GABA as an inhibitory neurotransmitter in inferior colliculus neurons: iontophoretic studies

Carl L. Faingold; Greta Gehlbach; Donald M. Caspary

Significant neurochemical, immunocytochemical, and ligand binding studies support a role for GABA as an inhibitory neurotransmitter in the inferior colliculus (IC). The present study attempted to satisfy some of the remaining criteria for establishing transmitter identity by utilizing iontophoretic application onto IC neurons of agents affecting the action of gamma-aminobutyric acid (GABA). The agents examined include GABA, a GABAB agonist (baclofen), a GABAA antagonist (bicuculline), a GABA uptake inhibitor (nipecotic acid), and a benzodiazepine (flurazepam), thought to exert its actions on the GABA receptor complex. Application of GABA results in inhibition of the spontaneous firing and acoustically evoked responses of inferior colliculus neurons. The inhibitory effect of GABA is enhanced by the simultaneous application of nipecotic acid or flurazepam. These agents as well as baclofen produce firing reductions when applied alone in higher doses. The effect of GABA can be blocked by application of bicuculline, and acoustically evoked (binaural) inhibition can also be selectively blocked by low doses of this GABAA antagonist. These data along with previous studies utilizing different techniques fulfill many of the criteria for establishment of GABA as an important inhibitory transmitter in the inferior colliculus.


Journal of Neuroscience Research | 2008

Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma.

Carol A. Bauer; Jeremy G. Turner; Donald M. Caspary; Kristin S. Myers; Thomas J. Brozoski

A longstanding hypothesis is that tinnitus, the perception of sound without an external acoustic source, is triggered by a distinctive pattern of cochlear hair cell (HC) damage and that this subsequently leads to altered neural activity in the central auditory pathway. This hypothesis was tested by assessing behavioral evidence of tinnitus and spontaneous neural activity in the inferior colliculus (IC) after unilateral cochlear trauma. Chinchillas were assigned to four cochlear treatment groups. Each treatment produced a distinctive pattern of HC damage, as follows: acoustic exposure (AEx): sparse low‐frequency inner hair cell (IHC) and outer hair cell (OHC) loss; round window cisplatin (CisEx): pronounced OHC loss mixed with some IHC loss; round window carboplatin (CarbEx): pronounced IHC loss without OHC loss; control: no loss. Compared with controls, all experimental groups displayed significant and similar psychophysical evidence of tinnitus with features resembling a 1‐kHz tone. Contralateral IC spontaneous activity was elevated in the AEx and CisEx groups, which showed increased spiking and increased cross‐fiber synchrony. A multidimensional analysis identified a subpopulation of neurons more prevalent in animals with tinnitus. These units were characterized by high bursting, low ISI variance, and within‐burst peak spiking of approximately 1,000/sec. It was concluded that cochlear trauma in general, rather than its specific features, leads to multiple changes in central activity that underpin tinnitus. Particularly affected was a subpopulation ensemble of IC neurons with the described unique triad of features.


Hearing Research | 2000

GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma

Joseph C. Milbrandt; T.M Holder; M.C Wilson; Richard Salvi; Donald M. Caspary

Pharmacological studies of the inferior colliculus (IC) suggest that the inhibitory amino acid neurotransmitter gamma-aminobutyric acid (GABA) plays an important role in shaping responses to simple and complex acoustic stimuli. Several models of auditory dysfunction, including age-related hearing loss, tinnitus, and peripheral deafferentation, suggest an alteration of normal GABA neurotransmission in central auditory pathways. The present study attempts to further characterize noise-induced changes in GABA markers in the IC. Four groups (unexposed control, 0 h post-exposure, 42 h post-exposure, and 30 days post-exposure) of 3-month-old male Fischer 344 rats were exposed to a high intensity sound (12 kHz, 106 dB) for 10 h. Observed hair cell damage was primarily confined to the basal half of the cochlea. There was a significant decrease in glutamic acid decarboxylase (GAD(65)) immunoreactivity in the IC membrane fraction compared to controls (P<0.05) at 0 h (-41%) and 42 h (-28%) post-exposure, with complete recovery by 30 days post-exposure (P>0.98). Observed decreases in cytosolic levels of GAD(65) were not significant. Quantitative muscimol receptor binding revealed a significant increase (+20%) in IC 30 days after sound exposure (P<0.05). These data suggest that changes in GABA neurotransmission occur in the IC of animals exposed to intense sound. Additional studies are needed to determine whether these changes are a result of protective/compensatory mechanisms or merely peripheral differentiation, as well as whether these changes preserve or diminish central auditory system function.


Neuroscience | 1999

Age-related changes in GABAA receptor subunit composition and function in rat auditory system

Donald M. Caspary; T.M Holder; Larry F. Hughes; J.C. Milbrandt; Ruth M. McKernan; D.K Naritoku

A decline in the ability to discriminate speech from noise due to age-related hearing loss (presbycusis) may reflect impaired auditory information processing within the central nervous system. Presbycusis may result, in part, from functional loss of the inhibitory neurotransmitter GABA. The present study assessed age-related changes of the GABA(A) receptor in the inferior colliculus of young-adult, middle-aged, and aged rats related to: (i) receptor subunit composition and (ii) receptor function. Western blotting was used to measure protein levels of selected GABA(A) receptor subunits in preparations obtained from the inferior colliculus of Fischer 344 and Fischer 344/Brown-Norway F1 hybrid rats. In both strains, the aged group exhibited significant increases in gamma1 subunit protein and a decrease in alpha1 subunit protein. To examine the functional consequence of this putative age-related subunit change, we measured the ability of exogenous GABA to flux/translocate chloride ions into microsac preparations derived from Fischer 344 inferior colliculus. GABA-mediated chloride influx was significantly increased in samples prepared from the inferior colliculus of aged animals. Together with previous studies, these results strongly suggest an age-related change in GABA(A) receptor composition. These changes may reflect a compensatory up-regulation of inhibitory function in the face of significant loss of presynaptic GABA release. These findings provide one example of plastic neurotransmitter receptor changes which can occur during the ageing process.

Collaboration


Dive into the Donald M. Caspary's collaboration.

Top Co-Authors

Avatar

Carl L. Faingold

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Larry F. Hughes

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lynne Ling

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Thomas J. Brozoski

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Peggy Shadduck Palombi

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Carol A. Bauer

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ben D. Richardson

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Parrish

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Joseph C. Milbrandt

Southern Illinois University Carbondale

View shared research outputs
Researchain Logo
Decentralizing Knowledge