Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald McKenzie is active.

Publication


Featured researches published by Donald McKenzie.


Ecological Applications | 2009

Climate and wildfire area burned in western U.S. ecoprovinces, 1916-2003.

Jeremy S. Littell; Donald McKenzie; David L. Peterson; Anthony L. Westerling

The purpose of this paper is to quantify climatic controls on the area burned by fire in different vegetation types in the western United States. We demonstrate that wildfire area burned (WFAB) in the American West was controlled by climate during the 20th century (1916-2003). Persistent ecosystem-specific correlations between climate and WFAB are grouped by vegetation type (ecoprovinces). Most mountainous ecoprovinces exhibit strong year-of-fire relationships with low precipitation, low Palmer drought severity index (PDSI), and high temperature. Grass- and shrub-dominated ecoprovinces had positive relationships with antecedent precipitation or PDSI. For 1977-2003, a few climate variables explain 33-87% (mean = 64%) of WFAB, indicating strong linkages between climate and area burned. For 1916-2003, the relationships are weaker, but climate explained 25-57% (mean = 39%) of the variability. The variance in WFAB is proportional to the mean squared for different data sets at different spatial scales. The importance of antecedent climate (summer drought in forested ecosystems and antecedent winter precipitation in shrub and grassland ecosystems) indicates that the mechanism behind the observed fire-climate relationships is climatic preconditioning of large areas of low fuel moisture via drying of existing fuels or fuel production and drying. The impacts of climate change on fire regimes will therefore vary with the relative energy or water limitations of ecosystems. Ecoprovinces proved a useful compromise between ecologically imprecise state-level and localized gridded fire data. The differences in climate-fire relationships among the ecoprovinces underscore the need to consider ecological context (vegetation, fuels, and seasonal climate) to identify specific climate drivers of WFAB. Despite the possible influence of fire suppression, exclusion, and fuel treatment, WFAB is still substantially controlled by climate. The implications for planning and management are that future WFAB and adaptation to climate change will likely depend on ecosystem-specific, seasonal variation in climate. In fuel-limited ecosystems, fuel treatments can probably mitigate fire vulnerability and increase resilience more readily than in climate-limited ecosystems, in which large severe fires under extreme weather conditions will continue to account for most area burned.


Ecological Applications | 2004

DROUGHT AND PACIFIC DECADAL OSCILLATION LINKED TO FIRE OCCURRENCE IN THE INLAND PACIFIC NORTHWEST

Amy E. Hessl; Donald McKenzie; Richard Schellhaas

Historical variability of fire regimes must be understood within the context of climatic and human drivers of disturbance occurring at multiple temporal scales. We describe the relationship between fire occurrence and interannual to decadal climatic var- iability (Palmer Drought Severity Index (PDSI), El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation (PDO)) and explain how land use changes in the 20th century affected these relationships. We used 1701 fire-scarred trees collected in five study sites in central and eastern Washington State (USA) to investigate current year, lagged, and low frequency relationships between composite fire histories and PDSI, PDO, and ENSO (using the Southern Oscillation Index (SOI) as a measure of ENSO variability) using superposed epoch analysis and cross-spectral analysis. Fires tended to occur during dry summers and during the positive phase of the PDO. Cross-spectral analysis indicates that percentage of trees scarred by fire and the PDO are spectrally coherent at 47 years, the approximate cycle of the PDO. Similarly, percentage scarred and ENSO are spectrally coherent at six years, the approximate cycle of ENSO. However, other results suggest that ENSO was only a weak driver of fire occurrence in the past three centuries. While drought and fire appear to be tightly linked between 1700 and 1900, the relationship between drought and fire occurrence was disrupted during the 20th century as a result of land use changes. We suggest that long-term fire planning using the PDO may be possible in the Pacific Northwest, potentially allowing decadal-scale management of fire regimes, prescribed fire, and vege- tation dynamics.


Ecosystems | 2007

Cross-Scale Analysis of Fire Regimes

Donald A. Falk; Carol Miller; Donald McKenzie; Anne E. Black

Cross-scale spatial and temporal perspectives are important for studying contagious landscape disturbances such as fire, which are controlled by myriad processes operating at different scales. We examine fire regimes in forests of western North America, focusing on how observed patterns of fire frequency change across spatial scales. To quantify changes in fire frequency across spatial scale, we derive the event-area (EA) relationship and the analogous interval-area (IA) relationship using historical and simulated data from low- and high-severity fire regimes. The EA and IA provide multi-scale descriptions of fire regimes, as opposed to standard metrics that may apply only at a single scale. Parameters and properties of scaling functions (intercept, slope, minimum value) are associated statistically with properties of the fire regime, such as mean fire-free intervals and fire size distributions, but are not direct mathematical transformations of them because they also reflect mechanistic drivers of fire that are non-stationary in time and space. Patterns in fire-scaling relations can be used to identify how controls on fire regimes change across spatial and temporal scales. Future research that considers fire as a cross-scale process will be directly applicable to landscape-scale fire management.


Frontiers in Ecology and the Environment | 2011

Multi‐scale controls of historical forest‐fire regimes: new insights from fire‐scar networks

Donald A. Falk; Emily K. Heyerdahl; Peter M. Brown; Calvin A. Farris; Peter Z. Fulé; Donald McKenzie; Thomas W. Swetnam; Alan H. Taylor; Megan L. Van Horne

Anticipating future forest-fire regimes under changing climate requires that scientists and natural resource managers understand the factors that control fire across space and time. Fire scars – proxy records of fires, formed in the growth rings of long-lived trees – provide an annually accurate window into past low-severity fire regimes. In western North America, networks of the fire-scar records spanning centuries to millennia now include hundreds to thousands of trees sampled across hundreds to many thousands of hectares. Development of these local and regional fire-scar networks has created a new data type for ecologists interested in landscape and climate regulation of ecosystem processes – which, for example, may help to explain why forest fires are widespread during certain years but not others. These data also offer crucial reference information on fire as a dynamic landscape process for use in ecosystem management, especially when managing for forest structure and resilience to climate change.


Bulletin of the American Meteorological Society | 2009

A preliminary synthesis of modeled climate change impacts on U.S. regional ozone concentrations.

Christopher P. Weaver; Xin-Zhong Liang; Jinhong Zhu; P. J. Adams; P. Amar; J. Avise; Michael Caughey; Jack Chen; R. C. Cohen; E. Cooter; J. P. Dawson; Robert C. Gilliam; Alice B. Gilliland; Allen H. Goldstein; A. Grambsch; D. Grano; Alex Guenther; W. I. Gustafson; Robert A. Harley; Sheng He; B. Hemming; Christian Hogrefe; Ho Chun Huang; Sherri W. Hunt; Daniel J. Jacob; Patrick L. Kinney; Kenneth E. Kunkel; Jean-Francois Lamarque; Brian K. Lamb; Narasimhan K. Larkin

This paper provides a synthesis of results that have emerged from recent modeling studies of the potential sensitivity of U.S. regional ozone (O3) concentrations to global climate change (ca. 2050). This research has been carried out under the auspices of an ongoing U.S. Environmental Protection Agency (EPA) assessment effort to increase scientific understanding of the multiple complex interactions among climate, emissions, atmospheric chemistry, and air quality. The ultimate goal is to enhance the ability of air quality managers to consider global change in their decisions through improved characterization of the potential effects of global change on air quality, including O3 The results discussed here are interim, representing the first phase of the EPA assessment. The aim in this first phase was to consider the effects of climate change alone on air quality, without accompanying changes in anthropogenic emissions of precursor pollutants. Across all of the modeling experiments carried out by the differe...


Gen. Tech. Rep. PNW-GTR-628. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 30 p | 2005

Forest Structure and Fire Hazard in Dry Forests of the Western United States

David L. Peterson; Morris C. Johnson; James K. Agee; Theresa B. Jain; Donald McKenzie; Elizabeth D. Reinhardt

Peterson, David L.; Johnson, Morris C.; Agee, James K.; Jain, Theresa B.; McKenzie, Donald; Reinhardt, Elizabeth D. 2005. Forest structure and fire hazard in dry forests of the Western United States. Gen. Tech. Rep. PNW-GTR-628. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 30 p. Fire, in conjunction with landforms and climate, shapes the structure and function of forests throughout the Western United States, where millions of acres of forest lands contain accumulations of flammable fuel that are much higher than historical conditions owing to various forms of fire exclusion. The Healthy Forests Restoration Act mandates that public land managers assertively address this situation through active management of fuel and vegetation. This document synthesizes the relevant scientific knowledge that can assist fuel-treatment projects on national forests and other public lands and contribute to National Environmental Policy Act (NEPA) analyses and other assessments. It is intended to support science-based decisionmaking for fuel management in dry forests of the Western United States at the scale of forest stands (about 1 to 200 acres). It highlights ecological principles that need to be considered when managing forest fuel and vegetation for specific conditions related to forest structure and fire hazard. It also provides quantitative and qualitative guidelines for planning and implementing fuel treatments through various silvicultural prescriptions and surfacefuel treatments. Effective fuel treatments in forest stands with high fuel accumulations will typically require thinning to increase canopy base height, reduce canopy bulk density, reduce canopy continuity, and require a substantial reduction in surface fuel through prescribed fire or mechanical treatment or both. Long-term maintenance of desired fuel loadings and consideration of broader landscape patterns may improve the effectiveness of fuel treatments.


Journal of Geophysical Research | 2011

Model comparisons for estimating carbon emissions from North American wildland fire

Nancy H. F. French; William J. de Groot; Liza K. Jenkins; Brendan M. Rogers; Ernesto Alvarado; B. D. Amiro; Bernardus de Jong; Scott J. Goetz; Elizabeth E. Hoy; Edward J. Hyer; Robert E. Keane; Beverly E. Law; Donald McKenzie; Steven McNulty; Roger D. Ottmar; Diego R. Pérez-Salicrup; James T. Randerson; Kevin M. Robertson; Merritt R. Turetsky

Research activities focused on estimating the direct emissions of carbon from wildland fires across North America are reviewed as part of the North American Carbon Program disturbance synthesis. A comparison of methods to estimate the loss of carbon from the terrestrial biosphere to the atmosphere from wildland fires is presented. Published studies on emissions from recent and historic time periods and five specific cases are summarized, and new emissions estimates are made using contemporary methods for a set of specific fire events. Results from as many as six terrestrial models are compared. We find that methods generally produce similar results within each case, but estimates vary based on site location, vegetation (fuel) type, and fire weather. Area normalized emissions range from 0.23 kg C m−2 for shrubland sites in southern California/NW Mexico to as high as 6.0 kg C m−2 in northern conifer forests. Total emissions range from 0.23 to 1.6 Tg C for a set of 2003 fires in chaparral-dominated landscapes of California to 3.9 to 6.2 Tg C in the dense conifer forests of western Oregon. While the results from models do not always agree, variations can be attributed to differences in model assumptions and methods, including the treatment of canopy consumption and methods to account for changes in fuel moisture, one of the main drivers of variability in fire emissions. From our review and synthesis, we identify key uncertainties and areas of improvement for understanding the magnitude and spatial-temporal patterns of pyrogenic carbon emissions across North America.


International Journal of Wildland Fire | 2008

Climate drivers of regionally synchronous fires in the inland northwest (1651-1900)

Emily K. Heyerdahl; Donald McKenzie; Lori D. Daniels; Amy E. Hessl; Jeremy S. Littell; Nathan J. Mantua

| | | | | | | | | | | | || | | | | | | | | | | | | | | | | || ||| | | | | || | || | || | | | |||| | || | | | | | | | | || | | | | | | || | || | | | || || | | | || | | | | | | || | || || || | | || | | || | | || || | | | | | | | | || | | | | | ||| | | | | | | | | | | || || | || | | ||| | | | || || | || || | ||| | | | | | | | | | || || | | | | | | | | | | | | | | | | | | || | | || || | | | | || | | | | | | | | | | | ||| | | | | | | | | | | | | | | | | | | | ||| | | | | | || | | || || | | | | | | | | | | || | || | | | | | | | | | | | | | | | | || ||| | || | || | | | | | | | | | | || | || | | | | | | | || | | | | | | | | ||| | | | || |||| || || || || | | | | | | | | ||| | || | | | ||||||| ||| | || || || | | |||| || ||| || | | | |||| || | | || | | || ||| || | ||| || |||| | || ||| ||||| | || | | | | | | | | | | | | | | | | | | | | | | |||| | || | | || | || | | || || | | | ||| | | | | | | || | || || | | | | | | | | | || ||| | || | | ||| || | | | || | | | | | | | || | || | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ||| | | | | | | | | || | | | | | || | || | | | | | | || | | || || | | | | | | || | | | | | | ||| | ||| || | | | || | || || | | || | | | || | | | | | || | ||


Environmental Management | 2009

Options for National parks and reserves for adapting to climate change.

Jill S. Baron; Lance Gunderson; Craig D. Allen; Erica Fleishman; Donald McKenzie; Laura A. Meyerson; Jill Oropeza; Nathan L. Stephenson

Past and present climate has shaped the valued ecosystems currently protected in parks and reserves, but future climate change will redefine these conditions. Continued conservation as climate changes will require thinking differently about resource management than we have in the past; we present some logical steps and tools for doing so. Three critical tenets underpin future management plans and activities: (1) climate patterns of the past will not be the climate patterns of the future; (2) climate defines the environment and influences future trajectories of the distributions of species and their habitats; (3) specific management actions may help increase the resilience of some natural resources, but fundamental changes in species and their environment may be inevitable. Science-based management will be necessary because past experience may not serve as a guide for novel future conditions. Identifying resources and processes at risk, defining thresholds and reference conditions, and establishing monitoring and assessment programs are among the types of scientific practices needed to support a broadened portfolio of management activities. In addition to the control and hedging management strategies commonly in use today, we recommend adaptive management wherever possible. Adaptive management increases our ability to address the multiple scales at which species and processes function, and increases the speed of knowledge transfer among scientists and managers. Scenario planning provides a broad forward-thinking framework from which the most appropriate management tools can be chosen. The scope of climate change effects will require a shared vision among regional partners. Preparing for and adapting to climate change is as much a cultural and intellectual challenge as an ecological challenge.


Ecological Applications | 2014

Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA

C. Alina Cansler; Donald McKenzie

Warmer and drier climate over the past few decades has brought larger fire sizes and increased annual area burned in forested ecosystems of western North America, and continued increases in annual area burned are expected due to climate change. As warming continues, fires may also increase in severity and produce larger contiguous patches of severely burned areas. We used remotely sensed burn-severity data from 125 fires in the northern Cascade Range of Washington, USA, to explore relationships between fire size, severity, and the spatial pattern of severity. We examined relationships between climate and the annual area burned and the size of wildfires over a 25-year period. We tested the hypothesis that increased fire size is commensurate with increased burn severity and increased spatial aggregation of severely burned areas. We also asked how local ecological controls might modulate these relationships by comparing results over the whole study area (the northern Cascade Range) to those from four ecological subsections within it. We found significant positive relationships between climate and fire size, and between fire size and the proportion of high severity and spatial-pattern metrics that quantify the spatial aggregation of high-severity areas within fires, but the strength and significance of these relationships varied among the four subsections. In areas with more contiguous subalpine forests and less complex topography, the proportion and spatial aggregation of severely burned areas were more strongly correlated with fire size. If fire sizes increase in a warming climate, changes in the extent, severity, and spatial pattern of fire regimes are likely to be more pronounced in higher-severity fire regimes with less complex topography and more continuous fuels.

Collaboration


Dive into the Donald McKenzie's collaboration.

Top Co-Authors

Avatar

David L. Peterson

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Jeremy S. Littell

United States Bureau of Reclamation

View shared research outputs
Top Co-Authors

Avatar

Amy E. Hessl

West Virginia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Narasimhan K. Larkin

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy H. F. French

Michigan Technological University

View shared research outputs
Top Co-Authors

Avatar

Robert E. Keane

United States Forest Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge