Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald P. Breakwell is active.

Publication


Featured researches published by Donald P. Breakwell.


BMC Genomics | 2013

Phage cluster relationships identified through single gene analysis

Kyle Smith; Eduardo Castro-Nallar; Joshua N. B. Fisher; Donald P. Breakwell; Julianne H. Grose; Sandra H. Burnett

BackgroundPhylogenetic comparison of bacteriophages requires whole genome approaches such as dotplot analysis, genome pairwise maps, and gene content analysis. Currently mycobacteriophages, a highly studied phage group, are categorized into related clusters based on the comparative analysis of whole genome sequences. With the recent explosion of phage isolation, a simple method for phage cluster prediction would facilitate analysis of crude or complex samples without whole genome isolation and sequencing. The hypothesis of this study was that mycobacteriophage-cluster prediction is possible using comparison of a single, ubiquitous, semi-conserved gene. Tape Measure Protein (TMP) was selected to test the hypothesis because it is typically the longest gene in mycobacteriophage genomes and because regions within the TMP gene are conserved.ResultsA single gene, TMP, identified the known Mycobacteriophage clusters and subclusters using a Gepard dotplot comparison or a phylogenetic tree constructed from global alignment and maximum likelihood comparisons. Gepard analysis of 247 mycobacteriophage TMP sequences appropriately recovered 98.8% of the subcluster assignments that were made by whole-genome comparison. Subcluster-specific primers within TMP allow for PCR determination of the mycobacteriophage subcluster from DNA samples. Using the single-gene comparison approach for siphovirus coliphages, phage groupings by TMP comparison reflected relationships observed in a whole genome dotplot comparison and confirm the potential utility of this approach to another widely studied group of phages.ConclusionsTMP sequence comparison and PCR results support the hypothesis that a single gene can be used for distinguishing phage cluster and subcluster assignments. TMP single-gene analysis can quickly and accurately aid in mycobacteriophage classification.


Extremophiles | 2014

Life in extreme environments: microbial diversity in Great Salt Lake, Utah

Loubna Tazi; Donald P. Breakwell; Alan R. Harker; Keith A. Crandall

Great Salt Lake (GSL) represents one of the world’s most hypersaline environments. In this study, the archaeal and bacterial communities at the North and South arms of the lake were surveyed by cloning and sequencing the 16S rRNA gene. The sampling locations were chosen for high salt concentration and the presence of unique environmental gradients, such as petroleum seeps and high sulfur content. Molecular techniques have not been systematically applied to this extreme environment, and thus the composition and the genetic diversity of microbial communities at GSL remain mostly unknown. This study led to the identification of 58 archaeal and 42 bacterial operational taxonomic units. Our phylogenetic and statistical analyses displayed a high biodiversity of the microbial communities in this environment. In this survey, we also showed that the majority of the 16S rRNA gene sequences within the clone library were distantly related to previously described environmental halophilic archaeal and bacterial taxa and represent novel phylotypes.


BMC Genomics | 2014

Genomic comparison of 93 Bacillus phages reveals 12 clusters, 14 singletons and remarkable diversity

Julianne H. Grose; Garrett L Jensen; Sandra H. Burnett; Donald P. Breakwell

BackgroundThe Bacillus genus of Firmicutes bacteria is ubiquitous in nature and includes one of the best characterized model organisms, B. subtilis, as well as medically significant human pathogens, the most notorious being B. anthracis and B. cereus. As the most abundant living entities on the planet, bacteriophages are known to heavily influence the ecology and evolution of their hosts, including providing virulence factors. Thus, the identification and analysis of Bacillus phages is critical to understanding the evolution of Bacillus species, including pathogenic strains.ResultsWhole genome nucleotide and proteome comparison of the 93 extant Bacillus phages revealed 12 distinct clusters, 28 subclusters and 14 singleton phages. Host analysis of these clusters supports host boundaries at the subcluster level and suggests phages as vectors for genetic transfer within the Bacillus cereus group, with B. anthracis as a distant member of the group. Analysis of the proteins conserved among these phages reveals enormous diversity and the uncharacterized nature of these phages, with a total of 4,922 protein families (phams) of which only 951 (19%) had a predicted function. In addition, 3,058 (62%) of phams were orphams (phams containing a gene product from a single phage). The most populated phams were those encoding proteins involved in DNA metabolism, virion structure and assembly, cell lysis, or host function. These included several genes that may contribute to the pathogenicity of Bacillus strains.ConclusionsThis analysis provides a basis for understanding and characterizing Bacillus phages and other related phages as well as their contributions to the evolution and pathogenicity of Bacillus cereus group bacteria. The presence of sparsely populated clusters, the high ratio of singletons to clusters, and the large number of uncharacterized, conserved proteins confirms the need for more Bacillus phage isolation in order to understand the full extent of their diversity as well as their impact on host evolution.


BMC Genomics | 2014

Characterization of Paenibacillus larvae bacteriophages and their genomic relationships to firmicute bacteriophages

Bryan D. Merrill; Julianne H. Grose; Donald P. Breakwell; Sandra H. Burnett

BackgroundPaenibacillus larvae is a Firmicute bacterium that causes American Foulbrood, a lethal disease in honeybees and is a major source of global agricultural losses. Although P. larvae phages were isolated prior to 2013, no full genome sequences of P. larvae bacteriophages were published or analyzed. This report includes an in-depth analysis of the structure, genomes, and relatedness of P. larvae myoviruses Abouo, Davis, Emery, Jimmer1, Jimmer2, and siphovirus phiIBB_Pl23 to each other and to other known phages.ResultsP. larvae phages Abouo, Davies, Emery, Jimmer1, and Jimmer2 are myoviruses with ~50 kbp genomes. The six P. larvae phages form three distinct groups by dotplot analysis. An annotated linear genome map of these six phages displays important identifiable genes and demonstrates the relationship between phages. Sixty phage assembly or structural protein genes and 133 regulatory or other non-structural protein genes were identifiable among the six P. larvae phages. Jimmer1, Jimmer2, and Davies formed stable lysogens resistant to superinfection by genetically similar phages. The correlation between tape measure protein gene length and phage tail length allowed identification of co-isolated phages Emery and Abouo in electron micrographs. A Phamerator database was assembled with the P. larvae phage genomes and 107 genomes of Firmicute-infecting phages, including 71 Bacillus phages. Phamerator identified conserved domains in 1,501 of 6,181 phamilies (only 24.3%) encoded by genes in the database and revealed that P. larvae phage genomes shared at least one phamily with 72 of the 107 other phages. The phamily relationship of large terminase proteins was used to indicate putative DNA packaging strategies. Analyses from CoreGenes, Phamerator, and electron micrograph measurements indicated Jimmer1, Jimmer2, Abouo and Davies were related to phages phiC2, EJ-1, KC5a, and AQ113, which are small-genome myoviruses that infect Streptococcus, Lactobacillus, and Clostridium, respectively.ConclusionsThis paper represents the first comparison of phage genomes in the Paenibacillus genus and the first organization of P. larvae phages based on sequence and structure. This analysis provides an important contribution to the field of bacteriophage genomics by serving as a foundation on which to build an understanding of the natural predators of P. larvae.


Journal of Virology | 2012

Sequence and structural characterization of great salt lake bacteriophage CW02, a member of the T7-like supergroup.

Peter S. Shen; Matthew J. Domek; Eduardo Sanz-García; Aman Makaju; Ryan M. Taylor; Ryan Hoggan; M. D. Culumber; C. J. Oberg; Donald P. Breakwell; John T. Prince; David M. Belnap

ABSTRACT Halophage CW02 infects a Salinivibrio costicola-like bacterium, SA50, isolated from the Great Salt Lake. Following isolation, cultivation, and purification, CW02 was characterized by DNA sequencing, mass spectrometry, and electron microscopy. A conserved module of structural genes places CW02 in the T7 supergroup, members of which are found in diverse aquatic environments, including marine and freshwater ecosystems. CW02 has morphological similarities to viruses of the Podoviridae family. The structure of CW02, solved by cryogenic electron microscopy and three-dimensional reconstruction, enabled the fitting of a portion of the bacteriophage HK97 capsid protein into CW02 capsid density, thereby providing additional evidence that capsid proteins of tailed double-stranded DNA phages have a conserved fold. The CW02 capsid consists of bacteriophage lambda gpD-like densities that likely contribute to particle stability. Turret-like densities were found on icosahedral vertices and may represent a unique adaptation similar to what has been seen in other extremophilic viruses that infect archaea, such as Sulfolobus turreted icosahedral virus and halophage SH1.


Journal of Virology | 2014

The Genomes, Proteomes, and Structures of Three Novel Phages That Infect the Bacillus cereus Group and Carry Putative Virulence Factors

Julianne H. Grose; David M. Belnap; Jordan D. Jensen; Andrew D. Mathis; John T. Prince; Bryan D. Merrill; Sandra H. Burnett; Donald P. Breakwell

ABSTRACT This article reports the results of studying three novel bacteriophages, JL, Shanette, and Basilisk, which infect the pathogen Bacillus cereus and carry genes that may contribute to its pathogenesis. We analyzed host range and superinfection ability, mapped their genomes, and characterized phage structure by mass spectrometry and transmission electron microscopy (TEM). The JL and Shanette genomes were 96% similar and contained 217 open reading frames (ORFs) and 220 ORFs, respectively, while Basilisk has an unrelated genome containing 138 ORFs. Mass spectrometry revealed 23 phage particle proteins for JL and 15 for Basilisk, while only 11 and 4, respectively, were predicted to be present by sequence analysis. Structural protein homology to well-characterized phages suggested that JL and Shanette were members of the family Myoviridae, which was confirmed by TEM. The third phage, Basilisk, was similar only to uncharacterized phages and is an unrelated siphovirus. Cryogenic electron microscopy of this novel phage revealed a T=9 icosahedral capsid structure with the major capsid protein (MCP) likely having the same fold as bacteriophage HK97 MCP despite the lack of sequence similarity. Several putative virulence factors were encoded by these phage genomes, including TerC and TerD involved in tellurium resistance. Host range analysis of all three phages supports genetic transfer of such factors within the B. cereus group, including B. cereus, B. anthracis, and B. thuringiensis. This study provides a basis for understanding these three phages and other related phages as well as their contributions to the pathogenicity of B. cereus group bacteria. IMPORTANCE The Bacillus cereus group of bacteria contains several human and plant pathogens, including B. cereus, B. anthracis, and B. thuringiensis. Phages are intimately linked to the evolution of their bacterial hosts and often provide virulence factors, making the study of B. cereus phages important to understanding the evolution of pathogenic strains. Herein we provide the results of detailed study of three novel B. cereus phages, two highly related myoviruses (JL and Shanette) and an unrelated siphovirus (Basilisk). The detailed characterization of host range and superinfection, together with results of genomic, proteomic, and structural analyses, reveal several putative virulence factors as well as the ability of these phages to infect different pathogenic species.


Frontiers in Microbiology | 2016

Bacterial Dormancy Is More Prevalent in Freshwater than Hypersaline Lakes

Zachary T. Aanderud; Joshua C. Vert; Jay T. Lennon; Tylan W. Magnusson; Donald P. Breakwell; Alan R. Harker

Bacteria employ a diverse array of strategies to survive under extreme environmental conditions but maintaining these adaptations comes at an energetic cost. If energy reserves drop too low, extremophiles may enter a dormant state to persist. We estimated bacterial dormancy and identified the environmental variables influencing our activity proxy in 10 hypersaline and freshwater lakes across the Western United States. Using ribosomal RNA:DNA ratios as an indicator for bacterial activity, we found that the proportion of the community exhibiting dormancy was 16% lower in hypersaline than freshwater lakes. Based on our indicator variable multiple regression results, saltier conditions in both freshwater and hypersaline lakes increased activity, suggesting that salinity was a robust environmental filter structuring bacterial activity in lake ecosystems. To a lesser degree, higher total phosphorus concentrations reduced dormancy in all lakes. Thus, even under extreme conditions, the competition for resources exerted pressure on activity. Within the compositionally distinct and less diverse hypersaline communities, abundant taxa were disproportionately active and localized in families Microbacteriaceae (Actinobacteria), Nitriliruptoraceae (Actinobacteria), and Rhodobacteraceae (Alphaproteobacteria). Our results are consistent with the view that hypersaline communities are able to capitalize on a seemingly more extreme, yet highly selective, set of conditions and finds that extremophiles may need dormancy less often to thrive and survive.


BMC Genomics | 2014

Erratum to: genomic comparison of 93 Bacillus

Julianne H. Grose; Garrett L Jensen; Sandra H. Burnett; Donald P. Breakwell

BackgroundThe Bacillus genus of Firmicutes bacteria is ubiquitous in nature and includes one of the best characterized model organisms, B. subtilis, as well as medically significant human pathogens, the most notorious being B. anthracis and B. cereus. As the most abundant living entities on the planet, bacteriophages are known to heavily influence the ecology and evolution of their hosts, including providing virulence factors. Thus, the identification and analysis of Bacillus phages is critical to understanding the evolution of Bacillus species, including pathogenic strains.ResultsWhole genome nucleotide and proteome comparison of the 83 extant, fully sequenced Bacillus phages revealed 10 distinct clusters, 24 subclusters and 15 singleton phages. Host analysis of these clusters supports host boundaries at the subcluster level and suggests phages as vectors for genetic transfer within the Bacillus cereus group, with B. anthracis as a distant member. Analysis of the proteins conserved among these phages reveals enormous diversity and the uncharacterized nature of these phages, with a total of 4,442 protein families (phams) of which only 894 (20%) had a predicted function. In addition, 2,583 (58%) of phams were orphams (phams containing a single member). The most populated phams were those encoding proteins involved in DNA metabolism, virion structure and assembly, cell lysis, or host function. These included several genes that may contribute to the pathogenicity of Bacillus strains.ConclusionsThis analysis provides a basis for understanding and characterizing Bacillus and other related phages as well as their contributions to the evolution and pathogenicity of Bacillus cereus group bacteria. The presence of sparsely populated clusters, the high ratio of singletons to clusters, and the large number of uncharacterized, conserved proteins confirms the need for more Bacillus phage isolation in order to understand the full extent of their diversity as well as their impact on host evolution.


Genome Announcements | 2013

Complete Genome Sequences of Five Paenibacillus larvae Bacteriophages

Michael A. Sheflo; Adam V. Gardner; Bryan D. Merrill; Joshua N. B. Fisher; Bryce L. Lunt; Donald P. Breakwell; Julianne H. Grose; Sandra H. Burnett

ABSTRACT Paenibacillus larvae is a pathogen of honeybees that causes American foulbrood (AFB). We isolated bacteriophages from soil containing bee debris collected near beehives in Utah. We announce five high-quality complete genome sequences, which represent the first completed genome sequences submitted to GenBank for any P. larvae bacteriophage.


Genome Announcements | 2014

Genome Sequences of Three Novel Bacillus cereus Bacteriophages

Julianne H. Grose; Jordan D. Jensen; Bryan D. Merrill; Joshua N. B. Fisher; Sandra H. Burnett; Donald P. Breakwell

ABSTRACT The Bacillus cereus group is an assemblage of highly related firmicute bacteria that cause a variety of diseases in animals, including insects and humans. We announce three high-quality, complete genome sequences of bacteriophages we isolated from soil samples taken at the bases of fruit trees in Utah County, Utah. While two of the phages (Shanette and JL) are highly related myoviruses, the bacteriophage Basilisk is a siphovirus.

Collaboration


Dive into the Donald P. Breakwell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jordan A. Berg

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andy T. Ward

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar

Sandra Hope

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryce L. Lunt

Brigham Young University

View shared research outputs
Researchain Logo
Decentralizing Knowledge