Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald Rao is active.

Publication


Featured researches published by Donald Rao.


Advanced Drug Delivery Reviews | 2009

siRNA vs. shRNA: Similarities and differences☆

Donald Rao; John S. Vorhies; Neil Senzer; John Nemunaitis

RNA interference (RNAi) is a natural process through which expression of a targeted gene can be knocked down with high specificity and selectivity. Using available technology and bioinformatics investigators will soon be able to identify relevant bio molecular tumor network hubs as potential key targets for knockdown approaches. Methods of mediating the RNAi effect involve small interfering RNA (siRNA), short hairpin RNA (shRNA) and bi-functional shRNA. The simplicity of siRNA manufacturing and transient nature of the effect per dose are optimally suited for certain medical disorders (i.e. viral injections). However, using the endogenous processing machinery, optimized shRNA constructs allow for high potency and sustainable effects using low copy numbers resulting in less off-target effects, particularly if embedded in a miRNA scaffold. Bi-functional design may further enhance potency and safety of RNAi-based therapeutics. Remaining challenges include tumor selective delivery vehicles and more complete evaluation of the scope and scale of off-target effects. This review will compare siRNA, shRNA and bi-functional shRNA.


Pharmaceutical Research | 2011

RNA Interference and Cancer Therapy

Zhaohui Wang; Donald Rao; Neil Senzer; John Nemunaitis

ABSTRACTSince its discovery in 1998, RNA interference (RNAi) has revolutionized basic and clinical research. Small RNAs, including small interfering RNA (siRNA), short hairpin RNA (shRNA) and microRNA (miRNA), mediate RNAi effects through either cleavage-dependent or cleavage-independent RNA inducible silencing complex (RISC) effector processes. As a result of its efficacy and potential, RNAi has been elevated to the status of “blockbuster therapeutic” alongside recombinant protein and monoclonal antibody. RNAi has already contributed to our understanding of neoplasia and has great promise for anti-cancer therapeutics, particularly so for personalized cancer therapy. Despite this potential, several hurdles have to be overcome for successful development of RNAi-based pharmaceuticals. This review will discuss the potential for, challenges to, and the current status of RNAi-based cancer therapeutics.


Molecular Therapy | 2012

Phase I Trial of “bi-shRNAifurin/GMCSF DNA/Autologous Tumor Cell” Vaccine (FANG) in Advanced Cancer

Neil Senzer; Minal Barve; Joseph A. Kuhn; Anton Melnyk; Peter Beitsch; Martin Lazar; Samuel Lifshitz; Mitchell Magee; Jonathan Oh; Susan W Mill; Cynthia Bedell; Candice Higgs; Padmasini Kumar; Yang Yu; Fabienne Norvell; Connor Phalon; Nicolas Taquet; Donald Rao; Zhaohui Wang; Chris M. Jay; Beena O. Pappen; Gladice Wallraven; F. Charles Brunicardi; David M. Shanahan; Phillip B. Maples; John Nemunaitis

We performed a phase I trial of FANG vaccine, an autologous tumor-based product incorporating a plasmid encoding granulocyte-macrophage colony-stimulating factor (GMCSF) and a novel bifunctional short hairpin RNAi (bi-shRNAi) targeting furin convertase, thereby downregulating endogenous immunosuppressive transforming growth factors (TGF) β1 and β2. Patients with advanced cancer received up to 12 monthly intradermal injections of FANG vaccine (1 × 107 or 2.5 × 107 cells/ml injection). GMCSF, TGFβ1, TGFβ2, and furin proteins were quantified by enzyme-linked immunosorbent assay (ELISA). Safety and response were monitored. Vaccine manufacturing was successful in 42 of 46 patients of whom 27 received ≥1 vaccine. There were no treatment-related serious adverse events. Most common grade 1, 2 adverse events included local induration (n = 14) and local erythema (n = 11) at injection site. Post-transfection mean product expression GMCSF increased from 7.3 to 1,108 pg/106 cells/ml. Mean TGFβ1 and β2 effective target knockdown was 93.5 and 92.5% from baseline, respectively. Positive enzyme-linked immunospot (ELISPOT) response at month 4 was demonstrated in 9 of 18 patients serially assessed and correlated with survival duration from time of treatment (P = 0.025). Neither dose-adverse event nor dose-response relationship was noted. In conclusion, FANG vaccine was safe and elicited an immune response correlating with prolonged survival. Phase II assessment is justified.We performed a phase I trial of FANG vaccine, an autologous tumor-based product incorporating a plasmid encoding granulocyte-macrophage colony-stimulating factor (GMCSF) and a novel bifunctional short hairpin RNAi (bi-shRNAi) targeting furin convertase, thereby downregulating endogenous immunosuppressive transforming growth factors (TGF) β1 and β2. Patients with advanced cancer received up to 12 monthly intradermal injections of FANG vaccine (1 × 10(7) or 2.5 × 10(7) cells/ml injection). GMCSF, TGFβ1, TGFβ2, and furin proteins were quantified by enzyme-linked immunosorbent assay (ELISA). Safety and response were monitored. Vaccine manufacturing was successful in 42 of 46 patients of whom 27 received ≥1 vaccine. There were no treatment-related serious adverse events. Most common grade 1, 2 adverse events included local induration (n = 14) and local erythema (n = 11) at injection site. Post-transfection mean product expression GMCSF increased from 7.3 to 1,108 pg/10(6) cells/ml. Mean TGFβ1 and β2 effective target knockdown was 93.5 and 92.5% from baseline, respectively. Positive enzyme-linked immunospot (ELISPOT) response at month 4 was demonstrated in 9 of 18 patients serially assessed and correlated with survival duration from time of treatment (P = 0.025). Neither dose-adverse event nor dose-response relationship was noted. In conclusion, FANG vaccine was safe and elicited an immune response correlating with prolonged survival. Phase II assessment is justified.


Cancer Gene Therapy | 2009

Comparative assessment of siRNA and shRNA off target effects: what is slowing clinical development

Donald Rao; Neil Senzer; M A Cleary; John Nemunaitis

This review considers comparisons of the off-target effects of siRNA to shRNA and their potential impact on the efficacy and toxicity of RNAi based therapeutics.


Expert Reviews in Molecular Medicine | 2010

Potential use of RNA interference in cancer therapy.

Connor Phalon; Donald Rao; John Nemunaitis

RNA interference (RNAi) is an evolutionary conserved mechanism for specific gene silencing. This mechanism has great potential for use in targeted cancer therapy. Understanding the RNAi mechanism has led to the development of several novel RNAi-based therapeutic approaches currently in the early phases of clinical trials. It remains difficult to effectively deliver the nucleic acids required in vivo to initiate RNAi, and intense effort is under way in developing effective and targeted systemic delivery systems for RNAi. Description of in vivo delivery systems is not the focus of this review. In this review, we cover the rationale for pursuing personalised cancer therapy with RNAi, briefly review the mechanism of each major RNAi therapeutic technique, summarise and sample recent results with animal models applying RNAi for cancer, and provide an update on current clinical trials with RNAi-based therapeutic agents for cancer therapy. RNAi-based cancer therapy is still in its infancy, and there are numerous obstacles and issues that need to be resolved before its application in personalised therapy focusing on patient-cancer-specific targets can become standard cancer treatment, either alone or in combination with other treatments.


Cancer Gene Therapy | 2010

Enhanced target gene knockdown by a bifunctional shRNA: a novel approach of RNA interference

Donald Rao; P B Maples; Neil Senzer; P Kumar; Z Wang; B O Pappen; Y Yu; C Haddock; C Jay; A P Phadke; S Chen; Joseph A. Kuhn; D Dylewski; S Scott; D Monsma; C Webb; Alex W. Tong; D Shanahan; John Nemunaitis

RNA interference (RNAi) is a natural cellular regulatory process that inhibits gene expression by transcriptional, post-transcriptional and translational mechanisms. Synthetic approaches that emulate this process (small interfering RNA (siRNA), short hairpin RNA (shRNA)) have been shown to be similarly effective in this regard. We developed a novel ‘bifunctional’ RNAi strategy, which further optimizes target gene knockdown outcome. A bifunctional construct (bi-sh-STMN1) was generated against Stathmin1, a critical tubulin modulator that is overexpressed in human cancers. The bifunctional construct is postulated to concurrently repress the translation of the target mRNA (cleavage-independent, mRNA sequestration and degradation) and degrade (through RNase H-like cleavage) post-transcriptional mRNA through cleavage-dependent activities. Bi-sh-STMN1 showed enhanced potency and durability in parallel comparisons with conventional shRNA and siRNAs targeting the same sequence. Enhanced STMN1 protein knockdown by bi-sh-STMN1 was accompanied by target site cleavage at the mRNA level showed by the rapid amplification of complementary DNA ends (RACE) assay. Bi-sh-STMN1 also showed knockdown kinetics at the mRNA level consistent with its multieffector silencing mechanisms. The bifunctional shRNA is a highly effective and advantageous approach mediating RNAi at concentrations significantly lower than conventional shRNA or siRNA. These results support further evaluations.


DNA and Cell Biology | 2011

In vivo Safety and Antitumor Efficacy of Bifunctional Small Hairpin RNAs Specific for the Human Stathmin 1 Oncoprotein

Anagha P. Phadke; Chris M. Jay; Zhaohui Wang; Salina Chen; Shengnan Liu; Courtney Haddock; Padmasini Kumar; Beena O. Pappen; Donald Rao; Nancy Smyth Templeton; Egeenee Q. Daniels; Craig P. Webb; David Monsma; Stephanie B. Scott; Dawna Dylewski; Hermann B. Frieboes; F.C. Brunicardi; Neil Senzer; Phillip B. Maples; John Nemunaitis; Alex W. Tong

Bifunctional small hairpin RNAs (bi-shRNAs) are functional miRNA/siRNA composites that are optimized for posttranscriptional gene silencing through concurrent mRNA cleavage-dependent and -independent mechanisms (Rao et al., 2010 ). We have generated a novel bi-shRNA using the miR30 scaffold that is highly effective for knockdown of human stathmin (STMN1) mRNA. STMN1 overexpression well documented in human solid cancers correlates with their poor prognosis. Transfection with the bi-shSTMN1-encoding expression plasmid (pbi-shSTMN1) markedly reduced CCL-247 human colorectal cancer and SK-Mel-28 melanoma cell growth in vitro (Rao et al., 2010 ). We now examine in vivo the antitumor efficacy of this RNA interference-based approach with human tumor xenografted athymic mice. A single intratumoral (IT) injection of pbi-shSTMN1 (8 μg) reduced CCL-247 tumor xenograft growth by 44% at 7 days when delivered as a 1,2-dioleoyl-3-trimethyl-ammoniopropane:cholesterol liposomal complex. Extended growth reductions (57% at day 15; p < 0.05) were achieved with three daily treatments of the same construct. STMN1 protein reduction was confirmed by immunoblot analysis. IT treatments with pbi-shSTMN1 similarly inhibited the growth of tumorgrafts derived from low-passage primary melanoma (≥70% reduction for 2 weeks) and abrogated osteosarcoma tumorgraft growth, with the mature bi-shRNA effector molecule detectable for up to 16 days after last injection. Antitumor efficacy was evident for up to 25 days posttreatment in the melanoma tumorgraft model. The maximum tolerated dose by IT injection of >92 μg (Human equivalent dose [HED] of >0.3 mg/kg) in CCL-247 tumor xenograft-bearing athymic mice was ∼10-fold higher than the extrapolated IC(50) of 9 μg (HED of 0.03 mg/kg). Healthy, immunocompetent rats were used as biorelevant models for systemic safety assessments. The observed maximum tolerated dose of <100 μg for intravenously injected pbi-shSTMN1 (mouse equivalent of <26.5 μg; HED of <0.09 mg/kg) confirmed systemic safety of the therapeutic dose, hence supporting early-phase assessments of clinical safety and preliminary efficacy.


PLOS ONE | 2012

PDX-1 is a therapeutic target for pancreatic cancer, insulinoma and islet neoplasia using a novel RNA interference platform.

Shi-He Liu; Donald Rao; John Nemunaitis; Neil Senzer; Guisheng Zhou; David W. Dawson; Marie-Claude Gingras; Zhaohui Wang; Richard A. Gibbs; Michael A. Norman; Nancy Smyth Templeton; Francesco J. DeMayo; Bert W. O'Malley; Robbi Sanchez; William E. Fisher; F. Charles Brunicardi

Pancreatic and duodenal homeobox-1 (PDX-1) is a transcription factor that regulates insulin expression and islet maintenance in the adult pancreas. Our recent studies demonstrate that PDX-1 is an oncogene for pancreatic cancer and is overexpressed in pancreatic cancer. The purpose of this study was to demonstrate that PDX-1 is a therapeutic target for both hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Immunohistochemistry of human pancreatic and islet neoplasia specimens revealed marked PDX-1 overexpression, suggesting PDX-1 as a “drugable” target within these diseases. To do so, a novel RNA interference effector platform, bifunctional shRNAPDX-1, was developed and studied in mouse and human cell lines as well as in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Systemic delivery of bi-shRNAhumanPDX-1 lipoplexes resulted in marked reduction of tumor volume and improved survival in a human pancreatic cancer xenograft mouse model. bi-shRNAmousePDX-1 lipoplexes prevented death from hyperinsulinemia and hypoglycemia in an insulinoma mouse model. shRNAmousePDX-1 lipoplexes reversed hyperinsulinemia and hypoglycemia in an immune-competent mouse model of islet neoplasia. PDX-1 was overexpressed in pancreatic neuroendocrine tumors and nesidioblastosis. These data demonstrate that PDX-1 RNAi therapy controls hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia, therefore, PDX-1 is a potential therapeutic target for these pancreatic diseases.


Cancer Gene Therapy | 2007

Proof concept for clinical justification of network mapping for personalized cancer therapeutics.

John Nemunaitis; Neil Senzer; Khalil I; Shen Y; Kumar P; Alex W. Tong; Joseph A. Kuhn; Lamont J; Nemunaitis M; Donald Rao; Zhang Ya; Zhou Y; John S. Vorhies; Maples P; Hill C; Shanahan D

To identify signature targets associated with patient-specific cancer lesions based on tumor versus normal tissue differential protein and mRNA coexpression patterns for the purpose of synthesizing cancer-specific customized RNA interference knockdown therapeutics. Analysis of biopsied tissue involved two-dimensional difference in-gel electrophoresis (2D-DIGE) analysis coupled with MALDI-TOF/TOF mass spectrometry for proteomic assessment. Standard microarray techniques were utilized for mRNA analysis. Priority was assigned to overexpressed protein targets with co-overexpressed genes with a high likelihood of functional nodal centrality in the cancer network as defined by the interactive databases BIND, HPRD and ResNet. HPLC-grade small interfering RNA (siRNA) duplexes were utilized to assess knockdown of target proteins in expressive cell lines as measured by western blot. Seven patients with metastatic cancer underwent biopsy. One patient (RW001) had biopsies from two disease sites 10 months apart. Seven priority proteins were identified, one for each patient (RACK 1, Ras related nuclear protein, heat-shock 27 kDa protein 1, superoxide dismutase, enolase1, stathmin1 and cofilin1). Prioritized proteins in RW001 from the two disease sites over time were the same. We demonstrated >80% siRNA inhibition of RACK 1 and stathmin1 of inexpressive malignant cell lines with correlated cell kill. Identification of functionally relevant target gene fingerprints, unique to an individuals cancer, is feasible ‘at the bedside’ and can be utilized to synthesize siRNA knockdown therapeutics. Further animal safety testing followed by clinical study is recommended.


Molecular Therapy | 2016

Three-year Follow up of GMCSF/bi-shRNAfurin DNA-transfected Autologous Tumor Immunotherapy (Vigil) in Metastatic Advanced Ewing's Sarcoma

Maurizio Ghisoli; Minal Barve; Robert G. Mennel; Carl Lenarsky; Staci Horvath; Gladice Wallraven; Beena O. Pappen; Sam Whiting; Donald Rao; Neil Senzer; John Nemunaitis

Ewings sarcoma is a devastating rare pediatric cancer of the bone. Intense chemotherapy temporarily controls disease in most patients at presentation but has limited effect in patients with progressive or recurrent disease. We previously described preliminary results of a novel immunotherapy, FANG (Vigil) vaccine, in which 12 advanced stage Ewings patients were safely treated and went on to achieve a predicted immune response (IFNγ ELISPOT). We describe follow-up through year 3 of a prospective, nonrandomized study comparing an expanded group of Vigil-treated advanced disease Ewings sarcoma patients (n = 16) with a contemporaneous group of Ewings sarcoma patients (n = 14) not treated with Vigil. Long-term follow-up results show a survival benefit without evidence of significant toxicity (no ≥ grade 3) to Vigil when administered once monthly by intradermal injection (1 × 10e(6) cells/injection to 1 × 10e(7) cells/injection). Specifically, we report a 1-year actual survival of 73% for Vigil-treated patients compared to 23% in those not treated with Vigil. In addition, there was a 17.2-month difference in overall survival (OS; Kaplan-Meier) between the Vigil (median OS 731 days) and no Vigil patient groups (median OS 207 days). In conclusion, these results supply the rational for further testing of Vigil in advanced stage Ewings sarcoma.Ewings sarcoma is a devastating rare pediatric cancer of the bone. Intense chemotherapy temporarily controls disease in most patients at presentation but has limited effect in patients with progressive or recurrent disease. We previously described preliminary results of a novel immunotherapy, FANG (Vigil) vaccine, in which 12 advanced stage Ewings patients were safely treated and went on to achieve a predicted immune response (IFNγ ELISPOT). We describe follow-up through year 3 of a prospective, nonrandomized study comparing an expanded group of Vigil-treated advanced disease Ewings sarcoma patients (n = 16) with a contemporaneous group of Ewings sarcoma patients (n = 14) not treated with Vigil. Long-term follow-up results show a survival benefit without evidence of significant toxicity (no ≥ grade 3) to Vigil when administered once monthly by intradermal injection (1 × 10e6 cells/injection to 1 × 10e7 cells/injection). Specifically, we report a 1-year actual survival of 73% for Vigil-treated patients compared to 23% in those not treated with Vigil. In addition, there was a 17.2-month difference in overall survival (OS; Kaplan-Meier) between the Vigil (median OS 731 days) and no Vigil patient groups (median OS 207 days). In conclusion, these results supply the rational for further testing of Vigil in advanced stage Ewings sarcoma.

Collaboration


Dive into the Donald Rao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. Nemunaitis

Medical City Dallas Hospital

View shared research outputs
Top Co-Authors

Avatar

Zhaohui Wang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph A. Kuhn

Baylor University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge