Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald Stanski is active.

Publication


Featured researches published by Donald Stanski.


Nature Reviews Drug Discovery | 2009

The future of drug development: advancing clinical trial design

John Orloff; Frank L. Douglas; José Pinheiro; Susan Levinson; Michael Branson; Pravin R. Chaturvedi; Ene I. Ette; Paul Gallo; Gigi Hirsch; Cyrus R. Mehta; Nitin R. Patel; Sameer Sabir; Stacy L. Springs; Donald Stanski; Matthias R. Evers; Edd Fleming; Navjot Singh; Tony Tramontin; Howard L. Golub

Declining pharmaceutical industry productivity is well recognized by drug developers, regulatory authorities and patient groups. A key part of the problem is that clinical studies are increasingly expensive, driven by the rising costs of conducting Phase II and III trials. It is therefore crucial to ensure that these phases of drug development are conducted more efficiently and cost-effectively, and that attrition rates are reduced. In this article, we argue that moving from the traditional clinical development approach based on sequential, distinct phases towards a more integrated view that uses adaptive design tools to increase flexibility and maximize the use of accumulated knowledge could have an important role in achieving these goals. Applications and examples of the use of these tools — such as Bayesian methodologies — in early- and late-stage drug development are discussed, as well as the advantages, challenges and barriers to their more widespread implementation.


Respiratory Research | 2011

Characterization of the bronchodilatory dose response to indacaterol in patients with chronic obstructive pulmonary disease using model-based approaches

Didier Renard; Michael Looby; Benjamin Kramer; David Lawrence; David Morris; Donald Stanski

BackgroundIndacaterol is a once-daily long-acting inhaled β2-agonist indicated for maintenance treatment of moderate-to-severe chronic obstructive pulmonary disease (COPD). The large inter-patient and inter-study variability in forced expiratory volume in 1 second (FEV1) with bronchodilators makes determination of optimal doses difficult in conventional dose-ranging studies. We considered alternative methods of analysis.MethodsWe utilized a novel modelling approach to provide a robust analysis of the bronchodilatory dose response to indacaterol. This involved pooled analysis of study-level data to characterize the bronchodilatory dose response, and nonlinear mixed-effects analysis of patient-level data to characterize the impact of baseline covariates.ResultsThe study-level analysis pooled summary statistics for each steady-state visit in 11 placebo-controlled studies. These study-level summaries encompassed data from 7476 patients at indacaterol doses of 18.75-600 μg once daily, and showed that doses of 75 μg and above achieved clinically important improvements in predicted trough FEV1 response. Indacaterol 75 μg achieved 74% of the maximum effect on trough FEV1, and exceeded the midpoint of the 100-140 mL range that represents the minimal clinically important difference (MCID; ≥120 mL vs placebo), with a 90% probability that the mean improvement vs placebo exceeded the MCID. Indacaterol 150 μg achieved 85% of the model-predicted maximum effect on trough FEV1 and was numerically superior to all comparators (99.9% probability of exceeding MCID). Indacaterol 300 μg was the lowest dose that achieved the model-predicted maximum trough response.The patient-level analysis included data from 1835 patients from two dose-ranging studies of indacaterol 18.75-600 μg once daily. This analysis provided a characterization of dose response consistent with the study-level analysis, and demonstrated that disease severity, as captured by baseline FEV1, significantly affects the dose response, indicating that patients with more severe COPD require higher doses to achieve optimal bronchodilation.ConclusionsComprehensive assessment of the bronchodilatory dose response of indacaterol in COPD patients provided a robust confirmation that 75 μg is the minimum effective dose, and that 150 and 300 μg are expected to provide optimal bronchodilation, particularly in patients with severe disease.


Journal of Pharmacokinetics and Pharmacodynamics | 2010

Understanding pharmacokinetics using realistic computational models of fluid dynamics: biosimulation of drug distribution within the CSF space for intrathecal drugs

Andreas Kuttler; Thomas Dimke; Steven Kern; Gabriel Helmlinger; Donald Stanski; Luca Finelli

We introduce how biophysical modeling in pharmaceutical research and development, combining physiological observations at the tissue, organ and system level with selected drug physiochemical properties, may contribute to a greater and non-intuitive understanding of drug pharmacokinetics and therapeutic design. Based on rich first-principle knowledge combined with experimental data at both conception and calibration stages, and leveraging our insights on disease processes and drug pharmacology, biophysical modeling may provide a novel and unique opportunity to interactively characterize detailed drug transport, distribution, and subsequent therapeutic effects. This innovative approach is exemplified through a three-dimensional (3D) computational fluid dynamics model of the spinal canal motivated by questions arising during pharmaceutical development of one molecular therapy for spinal cord injury. The model was based on actual geometry reconstructed from magnetic resonance imaging data subsequently transformed in a parametric 3D geometry and a corresponding finite-volume representation. With dynamics controlled by transient Navier–Stokes equations, the model was implemented in a commercial multi-physics software environment established in the automotive and aerospace industries. While predictions were performed in silico, the underlying biophysical models relied on multiple sources of experimental data and knowledge from scientific literature. The results have provided insights into the primary factors that can influence the intrathecal distribution of drug after lumbar administration. This example illustrates how the approach connects the causal chain underlying drug distribution, starting with the technical aspect of drug delivery systems, through physiology-driven drug transport, then eventually linking to tissue penetration, binding, residence, and ultimately clearance. Currently supporting our drug development projects with an improved understanding of systems physiology, biophysical models are being increasingly used to characterize drug transport and distribution in human tissues where pharmacokinetic measurements are difficult or impossible to perform. Importantly, biophysical models can describe emergent properties of a system, i.e. properties not identifiable through the study of the system’s components taken in isolation.


British Journal of Pharmacology | 2013

PKPD modelling of the interrelationship between mean arterial BP, cardiac output and total peripheral resistance in conscious rats

Nelleke Snelder; Bart A. Ploeger; Olivier Luttringer; Dean F. Rigel; Randy Lee Webb; David Louis Feldman; Fumin Fu; Michael E. Beil; Liang Jin; Donald Stanski; Meindert Danhof

The homeostatic control of arterial BP is well understood with changes in BP resulting from changes in cardiac output (CO) and/or total peripheral resistance (TPR). A mechanism‐based and quantitative analysis of drug effects on this interrelationship could provide a basis for the prediction of drug effects on BP. Hence, we aimed to develop a mechanism‐based pharmacokinetic‐pharmacodynamic (PKPD) model in rats that could be used to characterize the effects of cardiovascular drugs with different mechanisms of action (MoA) on the interrelationship between BP, CO and TPR.


British Journal of Pharmacology | 2014

Drug effects on the CVS in conscious rats: separating cardiac output into heart rate and stroke volume using PKPD modelling

Nelleke Snelder; Bart A. Ploeger; Olivier Luttringer; Dean F. Rigel; Fumin Fu; Michael E. Beil; Donald Stanski; Meindert Danhof

Previously, a systems pharmacology model was developed characterizing drug effects on the interrelationship between mean arterial pressure (MAP), cardiac output (CO) and total peripheral resistance (TPR). The present investigation aims to (i) extend the previously developed model by parsing CO into heart rate (HR) and stroke volume (SV) and (ii) evaluate if the mechanism of action (MoA) of new compounds can be elucidated using only HR and MAP measurements.


Annali dell'Istituto Superiore di Sanità | 2011

Innovative approaches to clinical development and trial design

John Orloff; Donald Stanski

Pharmaceutical innovation is increasingly risky, costly and at times inefficient, which has led to a decline in industry productivity. Despite the increased investment in R&D by the industry, the number of new molecular entities achieving marketing authorization is not increasing. Novel approaches to clinical development and trial design could have a key role in overcoming some of these challenges by improving efficiency and reducing attrition rates. The effectiveness of clinical development can be improved by adopting a more integrated model that increases flexibility and maximizes the use of accumulated knowledge. Central to this model of drug development are novel tools, including modelling and simulation, Bayesian methodologies, and adaptive designs, such as seamless adaptive designs and sample-size re-estimation methods. Applications of these methodologies to early- and late-stage drug development are described with some specific examples, along with advantages, challenges, and barriers to implementation. Because they are so flexible, these new trial designs require significant statistical analyses, simulations and logistical considerations to verify their operating characteristics, and therefore tend to require more time for the planning and protocol development phase. Greater awareness of the distinct advantages of innovative designs by regulators and sponsors are crucial to increasing the adoption of these modern tools.


Drug Metabolism and Disposition | 2014

Translational pharmacokinetic modeling of fingolimod (FTY720) as a paradigm compound subject to sphingosine kinase-mediated phosphorylation.

Nelleke Snelder; Bart A. Ploeger; Olivier Luttringer; Donald Stanski; Meindert Danhof

A complicating factor in the translational pharmacology of sphingosine 1-phosphate agonists is that they exert their pharmacological effect through their respective phosphate metabolites, which are formed by the enzyme sphingosine kinase (S1PHK). In this investigation, we present a semimechanistic pharmacokinetic model for the interconversion of S1PHK substrates and their respective phosphates in rats and humans with the aim of investigating whether characterization of the rate of phosphorylation in blood platelets constitutes a basis for interspecies scaling using fingolimod as a model compound. Data on the time course of fingolimod and fingolimod-phosphate (fingolimod-P) blood concentrations after intravenous and oral administration of fingolimod and/or fingolimod-P in rats and after oral administration of fingolimod in doses of 0.5, 1.25, and 5 mg once daily in healthy volunteers were analyzed in conjunction with data on the ex vivo interconversion and blood-plasma distribution in rat and human blood, respectively. Integrating the data from the ex vivo and in vivo studies enabled simulation of fingolimod and fingolimod-P concentrations in plasma rather than blood, which are more relevant for characterizing drug effects. Large interspecies differences in the rate of phosphorylation between rats and humans were quantified. In human, phosphorylation of fingolimod in the platelets was four times slower compared with rat, whereas the dephosphorylation rates were comparable in both species. This partly explained the 10–12-fold overprediction of fingolimod-P exposure in human when applying a dose-by-factor approach on the developed rat model. Additionally, differences in presystemic phosphorylation should also be taken into account.


The Journal of Clinical Pharmacology | 2010

Fostering Culture and Optimizing Organizational Structure for Implementing Model‐Based Drug Development

Liping Zhang; Sandra R. B. Allerheiligen; Richard L. Lalonde; Donald Stanski; Marc Pfister

Model‐based drug development (MBDD) is a promising approach to improve decision making in drug development. The pharmaceutical industry has made substantial progress from engaging in empirical decision making to increasingly using pharmacometrics (ie, modeling and simulation [M&S]) as a quantitative decision‐making tool. Focusing on culture and an organizational structure perspective, this commentary summarizes experiences and vision from industry M&S leaders on implementing MBDD. A culture for MBDD needs to have wide acceptance of MBDD, enhanced decision making with probability‐based evidence and transparent rationale, quantitative impact metrics, and a brand that emphasizes cross‐disciplinary collaboration and ownership. An organizational structure for MBDD needs to have a dedicated pharmacometrics function, fine balance between quick wins and impact on long‐term R&D goals, and collaborative MBDD teams among clinical pharmacologists, statisticians, pharmacometricians, and clinicians. Pharmaceutical companies with these characteristics are prepared to fully embrace and implement MBDD.


Journal of Pharmacology and Experimental Therapeutics | 2017

Characterization and Prediction of Cardiovascular Effects of Fingolimod and Siponimod Using a Systems Pharmacology Modeling Approach

Nelleke Snelder; Bart A. Ploeger; Olivier Luttringer; Dean F. Rigel; Randy Lee Webb; David Louis Feldman; Fumin Fu; Michael E. Beil; Liang Jin; Donald Stanski; Meindert Danhof

Sphingosine 1-phosphate (S1P) receptor agonists are associated with cardiovascular effects in humans. This study aims to develop a systems pharmacology model to identify the site of action (i.e., primary hemodynamic response variable) of S1P receptor agonists, and to predict, in a quantitative manner, the cardiovascular effects of novel S1P receptor agonists in vivo. The cardiovascular effects of once-daily fingolimod (0, 0.1, 0.3, 1, 3, and 10 mg/kg) and siponimod (3 and 15 mg/kg) were continuously recorded in spontaneously hypertensive rats and Wistar-Kyoto rats. The results were analyzed using a recently developed systems cardiovascular pharmacology model, i.e. the CVS model; total peripheral resistance and heart rate were identified as the site of action for fingolimod. Next, the CVS model was interfaced with an S1P agonist pharmacokinetic-pharmacodynamic (PKPD) model. This combined model adequately predicted, in a quantitative manner, the cardiovascular effects of siponimod using in vitro binding assays. In conclusion, the combined CVS and S1P agonist PKPD model adequately describes the hemodynamic effects of S1P receptor agonists in rats and constitutes a basis for the prediction, in a strictly quantitative manner, of the cardiovascular effects of novel S1P receptor agonists.


The Journal of Clinical Pharmacology | 2008

Communicating With the FDA: The “Third Rail” of a New Model for Drug Development

Donald Stanski; John Orloff

Collaboration


Dive into the Donald Stanski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge