Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald W. Bowden is active.

Publication


Featured researches published by Donald W. Bowden.


Science | 2010

Association of Trypanolytic ApoL1 Variants with Kidney Disease in African-Americans

Giulio Genovese; David J. Friedman; Laurence Lecordier; Pierrick Uzureau; Barry I. Freedman; Donald W. Bowden; Carl D. Langefeld; Taras K. Oleksyk; Andrea L. Uscinski Knob; Andrea J. Bernhardy; Pamela J. Hicks; George W. Nelson; Benoit Vanhollebeke; Cheryl A. Winkler; Jeffrey B. Kopp; Etienne Pays; Martin R. Pollak

Out of Africa Kidney disease is more common in African Americans than in Americans of European descent, and genetics is likely to be a major contributing factor. Genovese et al. (p. 841, published online 15 July) now show that African Americans who carry specific sequence variants in a gene on chromosome 22 encoding apolipoprotein L-1 (APOL1) have an increased risk of developing hypertension-attributed end-stage kidney disease or focal segmental glomerulosclerosis. These variants are absent from European chromosomes. Among the functions ascribed to APOL1 is the ability to lyse and kill trypanosomes. Intriguingly, APOL1 derived from the risk alleles, but not the “wild-type” allele, killed Trypanosoma brucei rhodesiense, which causes African sleeping sickness. Genetic variants associated with kidney disease in African Americans may confer protection against trypanosomes. African Americans have higher rates of kidney disease than European Americans. Here, we show that, in African Americans, focal segmental glomerulosclerosis (FSGS) and hypertension-attributed end-stage kidney disease (H-ESKD) are associated with two independent sequence variants in the APOL1 gene on chromosome 22 {FSGS odds ratio = 10.5 [95% confidence interval (CI) 6.0 to 18.4]; H-ESKD odds ratio = 7.3 (95% CI 5.6 to 9.5)}. The two APOL1 variants are common in African chromosomes but absent from European chromosomes, and both reside within haplotypes that harbor signatures of positive selection. ApoL1 (apolipoprotein L-1) is a serum factor that lyses trypanosomes. In vitro assays revealed that only the kidney disease–associated ApoL1 variants lysed Trypanosoma brucei rhodesiense. We speculate that evolution of a critical survival factor in Africa may have contributed to the high rates of renal disease in African Americans.


Cell | 1987

A genetic linkage map of the human genome

Helen Donis-Keller; Philip Green; Cynthia Helms; Samuel Cartinhour; Barbara Weiffenbach; Karen Stephens; Tim Keith; Donald W. Bowden; Douglas R. Smith; Eric S. Lander; David Botstein; Kenneth S. Rediker; Thomas C. Gravius; Valerie Brown; Marcia Rising; Carol Parker; Jody A. Powers; Diane E. Watt; Erick R. Kauffman; Angela Bricker; Pamela Phipps; Hans Müller-Kahle; Thomas R. Fulton; Siu Ng; James W. Schumm; Jeffrey Carl Braman; Robert G. Knowlton; David F. Barker; Steven M. Crooks; Steven E. Lincoln

We report the construction of a linkage map of the human genome, based on the pattern of inheritance of 403 polymorphic loci, including 393 RFLPs, in a panel of DNAs from 21 three-generation families. By a combination of mathematical linkage analysis and physical localization of selected clones, it was possible to arrange these loci into linkage groups representing 23 human chromosomes. We estimate that the linkage map is detectably linked to at least 95% of the DNA in the human genome.


Nature Genetics | 2008

MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis

Jeffrey B. Kopp; Michael W. Smith; George W. Nelson; Randall C. Johnson; Barry I. Freedman; Donald W. Bowden; Taras K. Oleksyk; Louise M. McKenzie; Hiroshi Kajiyama; Tejinder S. Ahuja; Jeffrey S. Berns; William A. Briggs; Monique E. Cho; Richard A. Dart; Paul L. Kimmel; Stephen M. Korbet; Donna M. Michel; Michele H. Mokrzycki; Jeffrey R. Schelling; Eric E. Simon; Howard Trachtman; David Vlahov; Cheryl A. Winkler

The increased burden of chronic kidney and end-stage kidney diseases (ESKD) in populations of African ancestry has been largely unexplained. To identify genetic variants predisposing to idiopathic and HIV-1–associated focal segmental glomerulosclerosis (FSGS), we carried out an admixture-mapping linkage-disequilibrium genome scan on 190 African American individuals with FSGS and 222 controls. We identified a chromosome 22 region with a genome-wide logarithm of the odds (lod) score of 9.2 and a peak lod of 12.4 centered on MYH9, a functional candidate gene expressed in kidney podocytes. Multiple MYH9 SNPs and haplotypes were recessively associated with FSGS, most strongly a haplotype spanning exons 14 through 23 (OR = 5.0, 95% CI = 3.5–7.1; P = 4 × 10−23, n = 852). This association extended to hypertensive ESKD (OR = 2.2, 95% CI = 1.5–3.4; n = 433), but not type 2 diabetic ESKD (n = 476). Genetic variation at the MYH9 locus substantially explains the increased burden of FSGS and hypertensive ESKD among African Americans.


Bone | 2003

Adiponectin as a novel determinant of bone mineral density and visceral fat

Leon Lenchik; Thomas C. Register; Fang-Chi Hsu; Kurt Lohman; Barbara J. Nicklas; Barry I. Freedman; Carl D. Langefeld; J. Jeffrey Carr; Donald W. Bowden

Growing evidence suggests that positive associations between fat mass (FM) and bone mineral density (BMD) are mediated by not only biomechanical but also biochemical factors. Adiponectin is a novel adipocyte-derived hormone that regulates energy homeostasis and has anti-inflammatory and anti-atherogenic effects. Unlike other adipokines such as leptin, adiponectin levels decrease in obesity and type 2 diabetes. The purpose of our study was to investigate associations of serum adiponectin with BMD (DXA and QCT), FM (DXA and QCT), and serum leptin and soluble leptin receptor levels in 38 women and 42 men (age 39-81, BMI 17-55, 86% with type 2 diabetes). After adjusting for age, gender, race, smoking, and diabetes status, serum adiponectin was inversely associated with areal BMD (r = -0.20 to -0.3, all P < 0.01), volumetric BMD (r = -0.35 to -0.44, all P < 0.01), and visceral fat volume (r = -0.30, P < 0.01). These associations remained significant after adjusting for whole body fat mass. The associations of adiponectin with subcutaneous fat volume, whole body FM, and serum leptin level were not significant (all P > 0.1). These data suggest that adiponectin may play a role in the protective effects of visceral fat on BMD.


Journal of Medical Genetics | 1999

Mutations of the cathepsin C gene are responsible for Papillon-Lefèvre syndrome

Thomas C. Hart; P. Suzanne Hart; Donald W. Bowden; Michael D Michalec; Scott A. Callison; Steve J Walker; Yingze Zhang; Erhan Firatli

Papillon-Lefèvre syndrome (PLS) is an autosomal recessive disorder characterised by palmoplantar hyperkeratosis and severe early onset periodontitis that results in the premature loss of the primary and secondary dentitions. A major gene locus for PLS has been mapped to a 2.8 cM interval on chromosome 11q14. Correlation of physical and genetic maps of this interval indicate it includes at least 40 ESTs and six known genes including the lysosomal protease cathepsin C gene (CTSC). The CTSCmessage is expressed at high levels in a variety of immune cells including polymorphonuclear leucocytes, macrophages, and their precursors. By RT-PCR, we found CTSC is also expressed in epithelial regions commonly affected by PLS, including the palms, soles, knees, and oral keratinised gingiva. The 4.7 kbCTSC gene consists of two exons. Sequence analysis of CTSC from subjects affected with PLS from five consanguineous Turkish families identified four different mutations. An exon 1 nonsense mutation (856C→T) introduces a premature stop codon at amino acid 286. Three exon 2 mutations were identified, including a single nucleotide deletion (2692delA) of codon 349 introducing a frameshift and premature termination codon, a 2 bp deletion (2673-2674delCT) that results in introduction of a stop codon at amino acid 343, and a G→A substitution in codon 429 (2931G→A) introducing a premature termination codon. All PLS patients were homozygous for cathepsin C mutations inherited from a common ancestor. Parents and sibs heterozygous for cathepsin C mutations do not show either the palmoplantar hyperkeratosis or severe early onset periodontitis characteristic of PLS. A more complete understanding of the functional physiology of cathepsin C carries significant implications for understanding normal and abnormal skin development and periodontal disease susceptibility.


PLOS Genetics | 2011

Genome-Wide Association Study of Coronary Heart Disease and Its Risk Factors in 8,090 African Americans: The NHLBI CARe Project

Guillaume Lettre; C. Palmer; Taylor Young; Kenechi G. Ejebe; Hooman Allayee; Emelia J. Benjamin; Franklyn I Bennett; Donald W. Bowden; Aravinda Chakravarti; Al Dreisbach; Deborah N. Farlow; Aaron R. Folsom; Myriam Fornage; Terrence Forrester; Ervin R. Fox; Christopher A. Haiman; Jaana Hartiala; Tamara B. Harris; Stanley L. Hazen; Susan R. Heckbert; Brian E. Henderson; Joel N. Hirschhorn; Brendan J. Keating; Stephen B. Kritchevsky; Emma K. Larkin; Mingyao Li; Megan E. Rudock; Colin A. McKenzie; James B. Meigs; Yang A. Meng

Coronary heart disease (CHD) is the leading cause of mortality in African Americans. To identify common genetic polymorphisms associated with CHD and its risk factors (LDL- and HDL-cholesterol (LDL-C and HDL-C), hypertension, smoking, and type-2 diabetes) in individuals of African ancestry, we performed a genome-wide association study (GWAS) in 8,090 African Americans from five population-based cohorts. We replicated 17 loci previously associated with CHD or its risk factors in Caucasians. For five of these regions (CHD: CDKN2A/CDKN2B; HDL-C: FADS1-3, PLTP, LPL, and ABCA1), we could leverage the distinct linkage disequilibrium (LD) patterns in African Americans to identify DNA polymorphisms more strongly associated with the phenotypes than the previously reported index SNPs found in Caucasian populations. We also developed a new approach for association testing in admixed populations that uses allelic and local ancestry variation. Using this method, we discovered several loci that would have been missed using the basic allelic and global ancestry information only. Our conclusions suggest that no major loci uniquely explain the high prevalence of CHD in African Americans. Our project has developed resources and methods that address both admixture- and SNP-association to maximize power for genetic discovery in even larger African-American consortia.


Diabetes | 1997

Linkage of Genetic Markers on Human Chromosomes 20 and 12 to NIDDM in Caucasian Sib Pairs With a History of Diabetic Nephropathy

Donald W. Bowden; Michèle M. Sale; Timothy D. Howard; Asif Qadri; Beverly J. Spray; Cynthia B. Rothschild; Stephen S. Rich; Barry I. Freedman

The potential contribution of maturity-onset diabetes of the young (MODY) genes to NIDDM susceptibility in African-American and Caucasian NIDDM-affected sibling pairs with a history of adult-onset diabetic nephropathy has been evaluated. Evidence for linkage to NIDDM was found with polymorphic loci that map to the long arms of human chromosomes 20 and 12 in regions containing the MODY1 and MODY3 genes. Nonparametric analysis of chromosome 20 inheritance data collected with the MODYl-linked marker D20S197 provides evidence forlinkage to NIDDM with a P value of 0.005 in Caucasian sib pairs using affected sibpair (ASP) analyses. Nonparametric analysis of chromosome 12 inheritance data collected with the MODY3-linked markers D12S349 and D12S86 provides evidence for linkage to NIDDM with P values of 0.04 and 0.006, respectively, in Caucasian sib pairs using similar analyses. No evidence for linkage of MODY1 and MODY3 markers to NIDDM in African-American sib pairs was observed. In addition, no evidence for linkage to MODY2 (glucokinase-associated MODY) was observed with either study population. Results of multipoint maximum logarithm of odds (LOD) score analysis were consistent with the ASP results. A maximum LOD score of 1.48 was calculated for linkage to MODYl-linked loci and 1.45 to MODY3-linked loci in Caucasian sib pairs. Tabulation of allele sharing in affected sib pairs with D20S197 and D12S349 suggests that affected sibling pairs may inherit susceptibility genes simultaneously from chromosome 20 and chromosome 12. The results suggest that genes contributing to NIDDM in the general Caucasian population are located in the regions containing the MODY1 and MODY3 genes.


The Journal of Clinical Endocrinology and Metabolism | 2008

Genetic and Environmental Determinants of 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D Levels in Hispanic and African Americans

Corinne D. Engelman; Tasha E. Fingerlin; Carl D. Langefeld; Pamela J. Hicks; Stephen S. Rich; Lynne E. Wagenknecht; Donald W. Bowden; Jill M. Norris

CONTEXT Vitamin D deficiency is associated with many adverse health outcomes, yet little is known about the genetic epidemiology of vitamin D or its metabolites. OBJECTIVE Our objective was to examine the relationship among three vitamin D-related genes and levels of 25-hydroxyvitamin D [25(OH)D] and 1,25-dihydroxyvitamin D [1,25(OH)2D] in Hispanics (HAs) and African Americans (AAs). DESIGN AND SETTING The cross-sectional Insulin Resistance Atherosclerosis Family Study recruited and examined subjects in: Los Angeles, California (AAs; 513 individuals from 42 families); San Luis Valley (SLV), Colorado (HAs; 513 individuals from 30 families); and San Antonio (SA), Texas (HAs; 504 individuals from 58 families). MAIN OUTCOME MEASURES Plasma levels of 25(OH)D and 1,25(OH)2D were measured. RESULTS Levels of 25(OH)D were highest in SLV-HAs [18.3 +/- 7.7 ng/ml (45.7 +/- 19.2 nmol/liter)], lower in SA-HAs [14.6 +/- 6.4 ng/ml (36.4 +/- 16.0 nmol/liter)], and lowest in AAs [11.0 +/- 5.4 ng/ml (27.5 +/- 13.5 nmol/liter)]. Levels of 1,25(OH)2D were similar in AAs [43.5 +/- 13.9 pg/ml (113.1 +/- 36.1 pmol/liter)] and SLV-HAs [43.2 +/- 13.3 pg/ml (112.3 +/- 34.6 pmol/liter)], but higher in SA-HAs [48.6 +/- 17.0 pg/ml (126.4 +/- 44.2 pmol/liter)]. After adjusting for gender and age within the site, two single nucleotide polymorphisms (SNPs) in the vitamin D binding protein gene (DBP), rs4588 and rs7041, were associated with 25(OH)D, and one SNP in the DBP, rs4588, was associated with 1,25(OH)2D at all three study centers. CONCLUSIONS SNPs in the DBP are associated with levels of 25(OH)D and 1,25(OH)2D in HA and AA participants in the Insulin Resistance Atherosclerosis Family Study.


Journal of The American Society of Nephrology | 2010

The Apolipoprotein L1 (APOL1) Gene and Nondiabetic Nephropathy in African Americans

Barry I. Freedman; Jeffrey B. Kopp; Carl D. Langefeld; Giulio Genovese; David J. Friedman; George W. Nelson; Cheryl A. Winkler; Donald W. Bowden; Martin R. Pollak

Mapping by admixture linkage disequilibrium (LD) detected strong association between nonmuscle myosin heavy chain 9 gene (MYH9) variants on chromosome 22 and nondiabetic nephropathy in African Americans. MYH9-related variants were posited to be the probable, but not necessarily the definitive, causal variants as a result of impressive statistical evidence of association, renal expression, and a role in autosomal dominant MYH9 disorders characterized by progressive glomerulosclerosis (Epstein and Fechtner syndromes). Dense mapping within MYH9 revealed striking LD patterns and racial variation in risk allele frequencies, suggesting population genetic factors such as selection may be operative in this region. Genovese and colleagues examined large chromosomal regions adjacent to MYH9 using genome-wide association methods and non-HapMap single nucleotide polymorphisms identified in Yoruba from the 1000 Genomes project. Statistically stronger associations were detected between two independent sequence variants in the Apolipoprotein L1 gene (APOL1) and nondiabetic nephropathy in African Americans, with odds ratios of 10.5 in idiopathic FSGS and 7.3 in hypertension-attributed ESRD. These kidney disease risk variants likely rose to high frequency in Africa because they confer resistance to trypanosomal infection and protect from African sleeping sickness. Risk variants in MYH9 and APOL1 are in strong LD, and the genetic risk that was previously attributed to MYH9 may reside, in part or in whole, in APOL1, although more complex models of risk cannot be excluded. This association likely explains racial disparities in nondiabetic nephropathy as a result of the high prevalence of risk alleles in individuals of African ancestry.


Diabetes Care | 2014

β-Cell Failure in Type 2 Diabetes: Postulated Mechanisms and Prospects for Prevention and Treatment

Philippe A. Halban; Kenneth S. Polonsky; Donald W. Bowden; Meredith Hawkins; Charlotte Ling; Kieren J. Mather; Alvin C. Powers; Christopher J. Rhodes; Lori Sussel; Gordon C. Weir

OBJECTIVE This article examines the foundation of β-cell failure in type 2 diabetes (T2D) and suggests areas for future research on the underlying mechanisms that may lead to improved prevention and treatment. RESEARCH DESIGN AND METHODS A group of experts participated in a conference on 14–16 October 2013 cosponsored by the Endocrine Society and the American Diabetes Association. A writing group prepared this summary and recommendations. RESULTS The writing group based this article on conference presentations, discussion, and debate. Topics covered include genetic predisposition, foundations of β-cell failure, natural history of β-cell failure, and impact of therapeutic interventions. CONCLUSIONS β-Cell failure is central to the development and progression of T2D. It antedates and predicts diabetes onset and progression, is in part genetically determined, and often can be identified with accuracy even though current tests are cumbersome and not well standardized. Multiple pathways underlie decreased β-cell function and mass, some of which may be shared and may also be a consequence of processes that initially caused dysfunction. Goals for future research include to 1) impact the natural history of β-cell failure; 2) identify and characterize genetic loci for T2D; 3) target β-cell signaling, metabolic, and genetic pathways to improve function/mass; 4) develop alternative sources of β-cells for cell-based therapy; 5) focus on metabolic environment to provide indirect benefit to β-cells; 6) improve understanding of the physiology of responses to bypass surgery; and 7) identify circulating factors and neuronal circuits underlying the axis of communication between the brain and β-cells.

Collaboration


Dive into the Donald W. Bowden's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianzhao Xu

Wake Forest University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge