Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald W. Pettigrew is active.

Publication


Featured researches published by Donald W. Pettigrew.


Journal of Bacteriology | 2001

Reverse genetics of Escherichia coli glycerol kinase allosteric regulation and glucose control of glycerol utilization in vivo

Holtman Ck; Pawlyk Ac; Meadow Nd; Donald W. Pettigrew

Reverse genetics is used to evaluate the roles in vivo of allosteric regulation of Escherichia coli glycerol kinase by the glucose-specific phosphocarrier of the phosphoenolpyruvate:glycose phosphotransferase system, IIA(Glc) (formerly known as III(glc)), and by fructose 1,6-bisphosphate. Roles have been postulated for these allosteric effectors in glucose control of both glycerol utilization and expression of the glpK gene. Genetics methods based on homologous recombination are used to place glpK alleles with known specific mutations into the chromosomal context of the glpK gene in three different genetic backgrounds. The alleles encode glycerol kinases with normal catalytic properties and specific alterations of allosteric regulatory properties, as determined by in vitro characterization of the purified enzymes. The E. coli strains with these alleles display the glycerol kinase regulatory phenotypes that are expected on the basis of the in vitro characterizations. Strains with different glpR alleles are used to assess the relationships between allosteric regulation of glycerol kinase and specific repression in glucose control of the expression of the glpK gene. Results of these studies show that glucose control of glycerol utilization and glycerol kinase expression is not affected by the loss of IIA(Glc) inhibition of glycerol kinase. In contrast, fructose 1,6-bisphosphate inhibition of glycerol kinase is the dominant allosteric control mechanism, and glucose is unable to control glycerol utilization in its absence. Specific repression is not required for glucose control of glycerol utilization, and the relative roles of various mechanisms for glucose control (catabolite repression, specific repression, and inducer exclusion) are different for glycerol utilization than for lactose utilization.


Structure | 1998

Glycerol kinase from Escherichia coli and an Ala65-->Thr mutant: the crystal structures reveal conformational changes with implications for allosteric regulation.

Michael D. Feese; H Rick Faber; Cory E. Bystrom; Donald W. Pettigrew; S. James Remington

BACKGROUND Glycerol kinase (GK) from Escherichia coli is a velocity-modulated (V system) enzyme that has three allosteric effectors with independent mechanisms: fructose-1,6-bisphosphate (FBP); the phosphocarrier protein IIAGlc; and adenosine nucleotides. The enzyme exists in solution as functional dimers that associate reversibly to form tetramers. GK is a member of a superfamily of ATPases that share a common ATPase domain and are thought to undergo a large conformational change as an intrinsic step in their catalytic cycle. Members of this family include actin, hexokinase and the heat shock protein hsc70. RESULTS We report here the crystal structures of GK and a mutant of GK (Ala65-->Thr) in complex with glycerol and ADP. Crystals of both enzymes contain the same 222 symmetric tetramer. The functional dimer is identical to that described previously for the IIAGlc-GK complex structure. The tetramer interface is significantly different, however, with a relative 22.3 degrees rotation and 6.34 A translation of one functional dimer. The overall monomer structure is unchanged except for two regions: the IIAGlc-binding site undergoes a structural rearrangement and residues 230-236 become ordered and bind orthophosphate at the tetramer interface. We also report the structure of a second mutant of GK (IIe474-->Asp) in complex with IIAGlc; this complex crystallized isomorphously to the wild type IIAGlc-GK complex. Site-directed mutants of GK with substitutions at the IIAGlc-binding site show significantly altered kinetic and regulatory properties, suggesting that the conformation of the binding site is linked to the regulation of activity. CONCLUSIONS We conclude that the new tetramer structure presented here is an inactive form of the physiologically relevant tetramer. The structure and location of the orthophosphate-binding site is consistent with it being part of the FBP-binding site. Mutational analysis and the structure of the IIAGlc-GK(IIe474-->Asp) complex suggest the conformational transition of the IIAGlc-binding site to be an essential aspect of IIAGlc regulation.


Journal of Biological Chemistry | 2011

Functional and Metabolic Effects of Adaptive Glycerol Kinase (GLPK) Mutants in Escherichia coli

M. Kenyon Applebee; Andrew R. Joyce; Tom M Conrad; Donald W. Pettigrew; Bernhard O. Palsson

Herein we measure the effect of four adaptive non-synonymous mutations to the glycerol kinase (glpK) gene on catalytic function and regulation, to identify changes that correlate to increased fitness in glycerol media. The mutations significantly reduce affinity for the allosteric inhibitor fructose-1,6-bisphosphate (FBP) and formation of the tetramer, which are structurally related, in a manner that correlates inversely with imparted fitness during growth on glycerol, which strongly suggests that these enzymatic parameters drive growth improvement. Counterintuitively, the glpK mutations also increase glycerol-induced auto-catabolite repression that reduces glpK transcription in a manner that correlates to fitness. This suggests that increased specific GlpK activity is attenuated by negative feedback on glpK expression via catabolite repression, possibly to prevent methylglyoxal toxicity. We additionally report that glpK mutations were fixed in 47 of 50 independent glycerol-adapted lineages. By far the most frequently mutated locus (nucleotide 218) was mutated in 20 lineages, strongly suggesting this position has an elevated mutation rate. This study demonstrates that fitness correlations can be used to interrogate adaptive processes at the protein level and to identify the regulatory constraints underlying selection and improved growth.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Transplanting allosteric control of enzyme activity by protein–protein interactions: Coupling a regulatory site to the conserved catalytic core

Aaron C. Pawlyk; Donald W. Pettigrew

Glycerol kinase from Escherichia coli, but not Haemophilus influenzae, is inhibited allosterically by phosphotransferase system protein IIAGlc. The primary structures of these related kinases contain 501 amino acids, differing at 117. IIAGlc inhibition is transplanted from E. coli glycerol kinase into H. influenzae glycerol kinase by interconverting only 11 of the differences: 8 residues that interact with IIAGlc at the allosteric binding site and 3 residues in the conserved ATPase catalytic core that do not interact with IIAGlc but the solvent accessible surface of which decreases when it binds. The three core residues are crucial for coupling the allosteric site to the conserved catalytic core of the enzyme. The site of the coupling residues identifies a regulatory locus in the sugar kinase/heat shock protein 70/actin superfamily and suggests relations between allosteric regulation and the active site closure that characterizes the family. The location of the coupling residues provides empirical validation of a computational model that predicts a coupling pathway between the IIAGlc-binding site and the active site [Luque, I. & Freire, E. (2000) Proteins Struct. Funct. Genet. Suppl. 4, 63–71]. The requirement for changes in core residues to couple the allosteric and active sites and switching from inhibition to activation by a single amino acid change are consistent with a postulated mechanism for molecular evolution of allosteric regulation.


Bioorganic & Medicinal Chemistry Letters | 1997

ATP analogs with non-transferable groups in the γ position as inhibitors of glycerol kinase

Cory E. Bystrom; Donald W. Pettigrew; S. James Remington; Bruce P. Branchaud

Abstract β,γ-Difluoromethyleneadenosine-5′-triphosphate (AMP-PCF2P, 3) and γ-arsono-β,γ-methylene-adenosine-5′-diphosphate (AMP-PCAs, 4) were synthesized and were found to be competitive inhibitors of glycerol kinase. Commercially available AMP-PCP and AMP-PNP also are competitive inhibitors. The structural similarities and differences of these ATP analogs and their effect on kinase inhibition are discussed.


Journal of Molecular Biology | 1989

Crystallization and preliminary X-ray studies of Escherichia coli glycerol kinase.

H.R. Faber; Donald W. Pettigrew; S.J. Remington

Escherichia coli glycerol kinase, a major regulatory enzyme which catalyzes the reversible MgATP-dependent phosphorylation of glycerol has been crystallized by the hanging drop vapor diffusion method at room temperature. Three different crystal forms have been obtained in the presence of glycerol and appear to be suitable for X-ray crystallographic studies. Vapor diffusion against 55% ammonium sulfate and 1% beta-octyl glucoside (pH 7.0) yields rhombohedral crystals with space group R32, a = b = 277.1 A, c = 78.7 A (hexagonal indexing) containing a dimer of Mr 112,000 in the asymmetric unit (Vm = 2.64 A3/dalton). Vapor diffusion against sodium chloride in the presence of 10% (w/v) polyethylene glycol (pH 6.5 to 7.0) yields two different crystal forms, both with space group P2(1). The first form has a = 88.1 A, b = 99.3 A, c = 114.6 A, beta = 119 degrees, the second form has a = 92.5 A, b = 117.6 A, c = 108.3 A, beta = 93.64 degrees. Addition of ADP enhances growth of the monoclinic forms. These forms appear to contain an entire tetramer of Mr 224,000 in the asymmetric unit and have Vm values of 2.28 and 2.65 A3/dalton, respectively. All forms diffract to better than 3.0 A resolution while the second monoclinic form diffracts to approximately 1.8 A.


Archives of Biochemistry and Biophysics | 1987

Bovine liver dihydropyrimidine amidohydrolase: pH dependencies of the steady-state kinetic and proton relaxation rate properties of the Mn(II)-containing enzyme

Myoung Hee Lee; Donald W. Pettigrew; Eugene G. Sander; Thomas Nowak

The essential Zn(II) in bovine liver dihydropyrimidine amidohydrolase (DHPase) was removed by incubation with 2,6-dipicolinic acid and replaced with Mn(II). Electron paramagnetic resonance studies of Mn(II) binding show that there are four binding sites per tetramer, and the dissociation constant at pH 7.5 is 13.5 microM. The substitution of Mn(II) for Zn(II) increases the specific activity of the enzyme approximately sixfold but has only a small effect (twofold increase) on the Km for 5-bromo-5,6-dihydrouracil (BrH2Ura). The pH dependence of the catalytic properties of Mn(II)-DHPase is the same as for the Zn(II) enzyme (Lee, M., Cowling, R., Sander, E., and Pettigrew, D. (1986) Arch. Biochem. Biophys. 248, 368-378). The pH dependence is well described in terms of the ionization of a single group with a pK of about 6 in the free enzyme. The ionization of this group is required for catalytic activity. The substitution of Mn(II) for Zn(II) does not affect the pH dependence of DHPase catalysis and therefore strongly suggests that the ionizable group is an amino acid residue at or near the active site, rather than a metal-bound water molecule. The pH dependence of the enhancement of the paramagnetic effect of the DHPase-Mn complex on the relaxation rate of the solvent water protons also is well described in terms of the ionization of a single group with a pK of about 6. Ionization of the group which is involved in catalysis also perturbs the environment of the bound Mn(II). The ionization of the active site group does not affect the number of exchangeable water molecules but does affect the symmetry of the environment of the bound Mn(II) and its electron relaxation.


Archives of Biochemistry and Biophysics | 1986

Bovine liver dihydropyrimidine amidohydrolase: pH dependencies of inactivation by chelators and steady-state kinetic properties

Myoung Hee Lee; Rebecca A. Cowling; Eugene G. Sander; Donald W. Pettigrew

Dihydropyrimidine amidohydrolase (EC 3.5.2.2) catalyzes the reversible hydrolysis of 5,6-dihydropyrimidines to the corresponding beta-ureido acids. Previous work has shown that incubation of this Zn2+ metalloenzyme with 2,6-dipicolinic acid, 8-hydroxyquinoline-5-sulfonic acid, or o-phenanthroline results in inactivation by Zn2+ removal by a reaction pathway involving formation of a ternary enzyme-Zn2+-chelator complex which subsequently dissociates to yield apoenzyme and the Zn2+-chelate (K. P. Brooks, E. A. Jones, B. D. Kim, and E. G. Sander, (1983) Arch. Biochem. Biophys. 226, 469-483). In the present work, the pH dependence of chelator inactivation is studied. The equilibrium constant for formation of the ternary complex is strongly pH dependent and increases with decreasing pH for all three chelators. There is a positive correlation between the value of the equilibrium constant observed for each chelator and the value of its stability constant for formation of Zn2+-chelate. The affinity of the chelators for the enzyme increases in the order 8-hydroxyquinoline-5-sulfonic acid greater than o-phenanthroline greater than 2,6-dipicolinic acid. The first-order rate constant for breakdown of the ternary complex to yield apoenzyme and Zn2+-chelate is invariant with pH for a given chelator but is different for each chelator, increasing in the reverse order. The pH dependence of the inactivation shows that two ionizable groups on the enzyme are involved in the inactivation. On the other hand, the steady-state kinetic behavior of the enzyme is well-described by ionization of a single group with a pK of 6.0 in the free enzyme. The basic form of the group is required for catalysis; protonation of the group decreases both Vmax and the apparent affinity for substrate. Conversely, binding of substrate decreases the pK of this group to about 5. L-Dihydroorotic acid is shown to be a competitive inhibitor of dihydropyrimidine amidohydrolase. Binding of L-dihydroorotic acid increases the pK of the ionizable group to 6.5. The agreement between the pK in the enzyme-L-dihydroorotic acid complex and the higher pK observed in the pH dependence of inactivation by chelators suggests that the same group is involved in the binding of acid, and chelators. The different effects of substrate and L-dihydroorotic acid on the pK suggest that the binding modes of these two ligands may be different and suggest a structural basis for the mutally exclusive substrate specificities of dihydropyrimidine amidohydrolase and dihydroorotase.


Archives of Biochemistry and Biophysics | 2009

Oligomeric interactions provide alternatives to direct steric modes of control of sugar kinase/actin/hsp70 superfamily functions by heterotropic allosteric effectors: Inhibition of E. coli glycerol kinase

Donald W. Pettigrew

Unlike those for monomeric superfamily members, heterotropic allosteric effectors of the tetrameric Escherichia coli glycerol kinase (EGK) bind to only one of the two domains that define the catalytic cleft and far from the active site. An R369A amino acid substitution removes oligomeric interactions of a novel mini domain-swap loop of one subunit with the catalytic site of another subunit, and an A65T substitution perturbs oligomeric interactions in a second interface. Linked-functions enzyme kinetics, analytical ultracentrifugation, and FRET are used to assess effects of these substitutions on the allosteric control of catalysis. Inhibition by phosphotransferase system protein IIA(Glc) is reduced by the R369A substitution, and inhibition by fructose 1,6-bisphosphate is abolished by the A65T substitution. The oligomeric interactions enable the heterotropic allosteric effectors to act on both domains and modulate the catalytic cleft closure despite binding to only one domain.


Archives of Biochemistry and Biophysics | 2009

Amino acid substitutions in the sugar kinase/hsp70/actin superfamily conserved ATPase core of E. coli glycerol kinase modulate allosteric ligand affinity but do not alter allosteric coupling

Donald W. Pettigrew

IIA(Glc), the glucose-specific phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system, is an allosteric inhibitor of Escherichia coli glycerol kinase. A linked-functions initial-velocity enzyme kinetics approach is used to define the MgATP-IIA(Glc) heterotropic allosteric interaction. The interaction is measured by the allosteric coupling constants Q and W, which describe the mutual effect of the ligands on binding affinity and the effect of the allosteric ligand on V(max), respectively. Allosteric interactions between these ligands display K-type activation and V-type inhibition. The allosteric coupling constant Q is about 3, showing cooperative coupling such that each ligand increases the affinity for binding of the other. The allosteric coupling constant W is about 0.1, showing that the allosteric inhibition is partial such that binding of IIA(Glc) at saturation does not reduce V(max) to zero. E. coli glycerol kinase is a member of the sugar kinase/heat shock protein 70/actin superfamily, and an element of the superfamily conserved ATPase catalytic core was identified as part of the IIA(Glc) inhibition network because it is required to transplant IIA(Glc) allosteric control into a non-allosteric glycerol kinase [A.C. Pawlyk, D.W. Pettigrew, Proc. Natl. Acad. Sci. USA 99 (2002) 11115-11120]. Two of the amino acids at this locus of E. coli glycerol kinase are replaced with those from the non-allosteric enzyme to enable determination of its contributions to MgATP-IIA(Glc) allosteric coupling. The substitutions reduce the affinity for IIA(Glc) by about 5-fold without changing significantly the allosteric coupling constants Q and W. The insensitivity of the allosteric coupling constants to the substitutions may indicate that the allosteric network is robust or the locus is not an element of that network. These possibilities may arise from differences of E. coli glycerol kinase relative to other superfamily members with respect to oligomeric structure and location of the allosteric site in a single domain far from the catalytic site.

Collaboration


Dive into the Donald W. Pettigrew's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saul Roseman

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge