Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donalyn Scheuner is active.

Publication


Featured researches published by Donalyn Scheuner.


Molecular Cell | 2001

Translational control is required for the unfolded protein response and in vivo glucose homeostasis.

Donalyn Scheuner; Benbo Song; Edward L. McEwen; Chuan Liu; Ross Laybutt; Patrick J. Gillespie; Thom Saunders; Susan Bonner-Weir; Randal J. Kaufman

The accumulation of unfolded protein in the endoplasmic reticulum (ER) attenuates protein synthesis initiation through phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) at Ser51. Subsequently, transcription of genes encoding adaptive functions including the glucose-regulated proteins is induced. We show that eIF2alpha phosphorylation is required for translation attenuation, transcriptional induction, and survival in response to ER stress. Mice with a homozygous mutation at the eIF2alpha phosphorylation site (Ser51Ala) died within 18 hr after birth due to hypoglycemia associated with defective gluconeogenesis. In addition, homozygous mutant embryos and neonates displayed a deficiency in pancreatic beta cells. The results demonstrate that regulation of translation through eIF2alpha phosphorylation is essential for the ER stress response and in vivo glucose homeostasis.


Journal of Cell Biology | 2005

Stress granules and processing bodies are dynamically linked sites of mRNP remodeling

Nancy Kedersha; Georg Stoecklin; Maranatha Ayodele; Patrick W. Yacono; Jens Lykke-Andersen; Marvin J. Fritzler; Donalyn Scheuner; Randal J. Kaufman; David E. Golan; Paul Anderson

Stress granules (SGs) are cytoplasmic aggregates of stalled translational preinitiation complexes that accumulate during stress. GW bodies/processing bodies (PBs) are distinct cytoplasmic sites of mRNA degradation. In this study, we show that SGs and PBs are spatially, compositionally, and functionally linked. SGs and PBs are induced by stress, but SG assembly requires eIF2α phosphorylation, whereas PB assembly does not. They are also dispersed by inhibitors of translational elongation and share several protein components, including Fas-activated serine/threonine phosphoprotein, XRN1, eIF4E, and tristetraprolin (TTP). In contrast, eIF3, G3BP, eIF4G, and PABP-1 are restricted to SGs, whereas DCP1a and 2 are confined to PBs. SGs and PBs also can harbor the same species of mRNA and physically associate with one another in vivo, an interaction that is promoted by the related mRNA decay factors TTP and BRF1. We propose that mRNA released from disassembled polysomes is sorted and remodeled at SGs, from which selected transcripts are delivered to PBs for degradation.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Regulation of starvation- and virus-induced autophagy by the eIF2α kinase signaling pathway

Zsolt Tallóczy; Wenxia Jiang; Herbert W. Virgin; David A. Leib; Donalyn Scheuner; Randal J. Kaufman; Eeva-Liisa Eskelinen; Beth Levine

The eIF2α kinases are a family of evolutionarily conserved serine/threonine kinases that regulate stress-induced translational arrest. Here, we demonstrate that the yeast eIF2α kinase, GCN2, the target phosphorylation site of Gcn2p, Ser-51 of eIF2α, and the eIF2α-regulated transcriptional transactivator, GCN4, are essential for another fundamental stress response, starvation-induced autophagy. The mammalian IFN-inducible eIF2α kinase, PKR, rescues starvation-induced autophagy in GCN2-disrupted yeast, and pkr null and Ser-51 nonphosphorylatable mutant eIF2α murine embryonic fibroblasts are defective in autophagy triggered by herpes simplex virus infection. Furthermore, PKR and eIF2α Ser-51-dependent autophagy is antagonized by the herpes simplex virus neurovirulence protein, ICP34.5. Thus, autophagy is a novel evolutionarily conserved function of the eIF2α kinase pathway that is targeted by viral virulence gene products.


The EMBO Journal | 2005

ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth

Meixia Bi; Christine Naczki; Marianne Koritzinsky; Diane R. Fels; Jaime D. Blais; Nianping Hu; Heather P. Harding; Isabelle Novoa; Mahesh A. Varia; James A. Raleigh; Donalyn Scheuner; Randal J. Kaufman; John C. Bell; David Ron; Bradly G. Wouters; Constantinos Koumenis

Tumor cell adaptation to hypoxic stress is an important determinant of malignant progression. While much emphasis has been placed on the role of HIF‐1 in this context, the role of additional mechanisms has not been adequately explored. Here we demonstrate that cells cultured under hypoxic/anoxic conditions and transformed cells in hypoxic areas of tumors activate a translational control program known as the integrated stress response (ISR), which adapts cells to endoplasmic reticulum (ER) stress. Inactivation of ISR signaling by mutations in the ER kinase PERK and the translation initiation factor eIF2α or by a dominant‐negative PERK impairs cell survival under extreme hypoxia. Tumors derived from these mutant cell lines are smaller and exhibit higher levels of apoptosis in hypoxic areas compared to tumors with an intact ISR. Moreover, expression of the ISR targets ATF4 and CHOP was noted in hypoxic areas of human tumor biopsy samples. Collectively, these findings demonstrate that activation of the ISR is required for tumor cell adaptation to hypoxia, and suggest that this pathway is an attractive target for antitumor modalities.


Journal of Clinical Investigation | 2008

Chop deletion reduces oxidative stress, improves β cell function, and promotes cell survival in multiple mouse models of diabetes

Benbo Song; Donalyn Scheuner; David Ron; Subramaniam Pennathur; Randal J. Kaufman

The progression from insulin resistance to type 2 diabetes is caused by the failure of pancreatic beta cells to produce sufficient levels of insulin to meet the metabolic demand. Recent studies indicate that nutrient fluctuations and insulin resistance increase proinsulin synthesis in beta cells beyond the capacity for folding of nascent polypeptides within the endoplasmic reticulum (ER) lumen, thereby disrupting ER homeostasis and triggering the unfolded protein response (UPR). Chronic ER stress promotes apoptosis, at least in part through the UPR-induced transcription factor C/EBP homologous protein (CHOP). We assessed the effect of Chop deletion in multiple mouse models of type 2 diabetes and found that Chop-/- mice had improved glycemic control and expanded beta cell mass in all conditions analyzed. In both genetic and diet-induced models of insulin resistance, CHOP deficiency improved beta cell ultrastructure and promoted cell survival. In addition, we found that isolated islets from Chop-/- mice displayed increased expression of UPR and oxidative stress response genes and reduced levels of oxidative damage. These findings suggest that CHOP is a fundamental factor that links protein misfolding in the ER to oxidative stress and apoptosis in beta cells under conditions of increased insulin demand.


Molecular and Cellular Biology | 2004

Translational Repression Mediates Activation of Nuclear Factor Kappa B by Phosphorylated Translation Initiation Factor 2

Jing Deng; Phoebe D. Lu; Yuhong Zhang; Donalyn Scheuner; Randal J. Kaufman; Nahum Sonenberg; Heather P. Harding; David Ron

ABSTRACT Numerous stressful conditions activate kinases that phosphorylate the alpha subunit of translation initiation factor 2 (eIF2α), thus attenuating mRNA translation and activating a gene expression program known as the integrated stress response. It has been noted that conditions associated with eIF2α phosphorylation, notably accumulation of unfolded proteins in the endoplasmic reticulum (ER), or ER stress, are also associated with activation of nuclear factor kappa B (NF-κB) and that eIF2α phosphorylation is required for NF-κB activation by ER stress. We have used a pharmacologically activable version of pancreatic ER kinase (PERK, an ER stress-responsive eIF2α kinase) to uncouple eIF2α phosphorylation from stress and found that phosphorylation of eIF2α is both necessary and sufficient to activate both NF-κB DNA binding and an NF-κB reporter gene. eIF2α phosphorylation-dependent NF-κB activation correlated with decreased levels of the inhibitor IκBα protein. Unlike canonical signaling pathways that promote IκBα phosphorylation and degradation, eIF2α phosphorylation did not increase phosphorylated IκBα levels or affect the stability of the protein. Pulse-chase labeling experiments indicate instead that repression of IκBα translation plays an important role in NF-κB activation in cells experiencing high levels of eIF2α phosphorylation. These studies suggest a direct role for eIF2α phosphorylation-dependent translational control in activating NF-κB during ER stress.


Endocrine Reviews | 2008

The Unfolded Protein Response: A Pathway That Links Insulin Demand with β-Cell Failure and Diabetes

Donalyn Scheuner; Randal J. Kaufman

The endoplasmic reticulum (ER) is the entry site into the secretory pathway for newly synthesized proteins destined for the cell surface or released into the extracellular milieu. The study of protein folding and trafficking within the ER is an extremely active area of research that has provided novel insights into many disease processes. Cells have evolved mechanisms to modulate the capacity and quality of the ER protein-folding machinery to prevent the accumulation of unfolded or misfolded proteins. These signaling pathways are collectively termed the unfolded protein response (UPR). The UPR sensors signal a transcriptional response to expand the ER folding capacity, increase degradation of malfolded proteins, and limit the rate of mRNA translation to reduce the client protein load. Recent genetic and biochemical evidence in both humans and mice supports a requirement for the UPR to preserve ER homeostasis and prevent the beta-cell failure that may be fundamental in the etiology of diabetes. Chronic or overwhelming ER stress stimuli associated with metabolic syndrome can disrupt protein folding in the ER, reduce insulin secretion, invoke oxidative stress, and activate cell death pathways. Therapeutic interventions to prevent polypeptide-misfolding, oxidative damage, and/or UPR-induced cell death have the potential to improve beta-cell function and/or survival in the treatment of diabetes.


Molecular and Cellular Biology | 2003

Phosphorylation of the α Subunit of Eukaryotic Initiation Factor 2 Is Required for Activation of NF-κB in Response to Diverse Cellular Stresses

Hao Yuan Jiang; Sheree A. Wek; Barbara C. McGrath; Donalyn Scheuner; Randal J. Kaufman; Douglas R. Cavener; Ronald C. Wek

ABSTRACT Nuclear factor κB (NF-κB) serves to coordinate the transcription of genes in response to diverse environmental stresses. In this report we show that phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2) is fundamental to the process by which many stress signals activate NF-κB. Phosphorylation of this translation factor is carried out by a family of protein kinases that each respond to distinct stress conditions. During impaired protein folding and assembly in the endoplasmic reticulum (ER), phosphorylation of eIF2α by PEK (Perk or EIF2AK3) is essential for induction of NF-κB transcriptional activity. The mechanism by which NF-κB is activated during ER stress entails the release, but not the degradation, of the inhibitory protein IκB. During amino acid deprivation, phosphorylation of eIF2α by GCN2 (EIF2AK4) signals the activation of NF-κB. Furthermore, inhibition of general translation or transcription by cycloheximide and actinomycin D, respectively, elicits the eIF2α phosphorylation required for induction of NF-κB. Together, these studies suggest that eIF2α kinases monitor and are activated by a range of stress conditions that affect transcription and protein synthesis and assembly, and the resulting eIFα phosphorylation is central to activation of the NF-κB. The absence of NF-κB-mediated transcription and its antiapoptotic function provides an explanation for why eIF2α kinase deficiency in diseases such as Wolcott-Rallison syndrome leads to cellular apoptosis and disease.


Journal of Biological Chemistry | 2005

Heme-regulated Inhibitor Kinase-mediated Phosphorylation of Eukaryotic Translation Initiation Factor 2 Inhibits Translation, Induces Stress Granule Formation, and Mediates Survival upon Arsenite Exposure

Edward McEwen; Nancy Kedersha; Benbo Song; Donalyn Scheuner; Natalie Gilks; Anping Han; Jane-Jane Chen; Paul Anderson; Randal J. Kaufman

Exposure to arsenite inhibits protein synthesis and activates multiple stress signaling pathways. Although arsenite has diverse effects on cell metabolism, we demonstrated that phosphorylation of eukaryotic translation initiation factor 2 at Ser-51 on the α subunit was necessary to inhibit protein synthesis initiation in arsenite-treated cells and was essential for stress granule formation. Of the four protein kinases known to phosphorylate eukaryotic translation initiation factor 2α, only the heme-regulated inhibitor kinase (HRI) was required for the translational inhibition in response to arsenite treatment in mouse embryonic fibroblasts. In addition, HRI expression was required for stress granule formation and cellular survival after arsenite treatment. In vivo studies elucidated a fundamental requirement for HRI in murine survival upon acute arsenite exposure. The results demonstrated an essential role for HRI in mediating arsenite stress-induced phosphorylation of eukaryotic translation initiation factor 2α, inhibition of protein synthesis, stress granule formation, and survival.


Journal of Clinical Investigation | 2005

The unfolded protein response sensor IRE1α is required at 2 distinct steps in B cell lymphopoiesis

Kezhong Zhang; Hetty N. Wong; Benbo Song; Corey N. Miller; Donalyn Scheuner; Randal J. Kaufman

B lymphocyte differentiation is coordinated with the induction of high-level Ig secretion and expansion of the secretory pathway. Upon accumulation of unfolded proteins in the lumen of the ER, cells activate an intracellular signaling pathway termed the unfolded protein response (UPR). Two major proximal sensors of the UPR are inositol-requiring enzyme 1alpha (IRE1alpha), an ER transmembrane protein kinase/endoribonuclease, and ER-resident eukaryotic translation initiation factor 2alpha (eIF2alpha) kinase (PERK). To elucidate whether the UPR plays an important role in lymphopoiesis, we carried out reconstitution of recombinase-activating gene 2-deficient (rag2-/-) mice with hematopoietic cells defective in either IRE1alpha- or PERK-mediated signaling. IRE1alpha-deficient (ire1alpha-/-) HSCs can proliferate and give rise to pro-B cells that home to bone marrow. However, IRE1alpha, but not its catalytic activities, is required for Ig gene rearrangement and production of B cell receptors (BCRs). Analysis of rag2-/- mice transplanted with IRE1alpha trans-dominant-negative bone marrow cells demonstrated an additional requirement for IRE1alpha in B lymphopoiesis: both the IRE1alpha kinase and RNase catalytic activities are required to splice the mRNA encoding X-box-binding protein 1 (XBP1) for terminal differentiation of mature B cells into antibody-secreting plasma cells. Furthermore, UPR-mediated translational control through eIF2alpha phosphorylation is not required for B lymphocyte maturation and/or plasma cell differentiation. These results suggest specific requirements of the IRE1alpha-mediated UPR subpathway in the early and late stages of B lymphopoiesis.

Collaboration


Dive into the Donalyn Scheuner's collaboration.

Top Co-Authors

Avatar

David Ron

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Benbo Song

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Hatzoglou

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Nancy Kedersha

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Paul Anderson

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Leib

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge