Donat Kögel
Goethe University Frankfurt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Donat Kögel.
Journal of Cell Biology | 2003
Claus Reimertz; Donat Kögel; Abdelhaq Rami; Thomas Chittenden; Jochen H. M. Prehn
Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of ischemic and neurodegenerative disorders. Treatment of human SH-SY5Y neuroblastoma cells with tunicamycin, an inhibitor of protein glycosylation, rapidly induced the expression of target genes of the unfolded protein response. However, prolonged treatment also triggered a delayed, caspase-dependent cell death. Microarray analysis of gene expression changes during tunicamycin-induced apoptosis revealed that the Bcl-2 homology domain 3-only family member, Bcl-2 binding component 3/p53 upregulated modulator of apoptosis (Bbc3/PUMA), was the most strongly induced pro-apoptotic gene. Expression of Bbc3/PUMA correlated with a Bcl-xL–sensitive release of cytochrome c and the activation of caspase-9 and -3. Increased expression of Bbc3/PUMA was also observed in p53-deficient human cells, in response to the ER stressor thapsigargin, and in rat hippocampal neurons after transient forebrain ischemia. Overexpression of Bbc3/PUMA was sufficient to trigger apoptosis in SH-SY5Y neuroblastoma cells, and human cells deficient in Bbc3/PUMA showed dramatically reduced apoptosis in response to ER stress. Our data suggest that the transcriptional induction of Bbc3/PUMA may be sufficient and necessary for ER stress–induced apoptosis.
Molecular Cancer Research | 2010
Valerie Voss; Christian Senft; Verena Lang; Michael W. Ronellenfitsch; Joachim P. Steinbach; Volker Seifert; Donat Kögel
Antiapoptotic Bcl-2 family members suppress both apoptosis and autophagy and are of major importance for therapy resistance of malignant gliomas. To target these molecules, we used BH3 mimetics and analyzed the molecular mechanisms of cell death induced thereby. Glioma cells displayed only limited sensitivity to single-agent treatment with the BH3 mimetics HA14-1, BH3I-2′, and ABT-737, whereas the pan-Bcl-2 inhibitor (−)-gossypol efficiently induced cell death. Furthermore, (−)-gossypol potentiated cell death induced by temozolomide (TMZ) in MGMT (O6-methylguanine-DNA methyltransferase)-negative U343 cells and, to a lesser extent, in MGMT-expressing U87 cells. (−)-Gossypol triggered translocation of light chain 3 to autophagosomes and lysosomes and cytochrome c release, but cell death occurred in the absence of lysosomal damage and effector caspase activation. Lentiviral knockdown of Beclin1 and Atg5 in U87, U343, and MZ-54 cells strongly diminished the extent of cell death induced by (−)-gossypol and combined treatment with TMZ, indicating that autophagy contributed to this type of cell death. In contrast, stable knockdown of the endogenous autophagy inhibitor mammalian target of rapamycin increased autophagic cell death. Our data suggest that pan-Bcl-2 inhibitors are promising drugs that induce caspase-independent, autophagic cell death in apoptosis-resistant malignant glioma cells and augment the action of TMZ. Furthermore, they indicate that efficient killing of glioma cells requires neutralization of Mcl-1. Mol Cancer Res; 8(7); 1002–16. ©2010 AACR.
Oncogene | 1998
Donat Kögel; Oliver Plöttner; Gerd Landsberg; Sven Christian; Karl Heinz Scheidtmann
We cloned a cDNA coding for a novel serine/threonine kinase, Dlk, a protein of 448 amino acids with a predicted molecular weight of 51.3 kDa. The kinase domain shows 81% amino acid sequence identity to the recently identified DAP kinase (death associated protein kinase) (), therefore, the new kinase was called Dlk, for DAP like kinase. Northern analyses revealed a single mRNA species of 1.7 kb which was ubiquitously expressed. However, expression levels varied considerably in different cell lines and tissues. Moreover, expression was downregulated upon UV irradiation. Dlk exhibited autophosphorylation activity, predominantly towards threonine residues and phosphorylated the regulatory subunit of myosin light chain, but in this case exclusively at serine residues. Dlk seems to be tightly associated with insoluble nuclear structures, presumably chromatin, since it was resistant to various rigorous extraction procedures but it was partially released upon DNase I digestion of nuclei. Consistent with this, purified Dlk phosphorylated core histones H3, H2A and H4 as exogenous substrates and endogenous histone H3 in kinase assays with nuclear extracts. Expression as GFP-fusion protein revealed a diffuse as well as a speckled nuclear staining suggesting an association with replication or transcription centers.
Journal of Cerebral Blood Flow and Metabolism | 2002
Birte Svensson; Marion Peters; Hans-Georg König; Monika Poppe; Bodo Levkau; Matthias Rothermundt; Volker Arolt; Donat Kögel; Jochen H. M. Prehn
The authors investigated the effect of vascular endothelial growth factor (VEGF) on hypoxic injury of cultured rat hippocampal neurons. Treatment with glutamate receptor antagonists prevented hypoxic neuron death. The same magnitude of protection was observed in cultures treated with VEGF, which also reduced excitotoxic neuron death induced directly by an exposure to N-methyl-d-aspartate. Vascular endothelial growth factor did not alter the activation of the transcription factor nuclear factor-κB during hypoxia and protected cells in a PI-3-kinase-independent manner. Vascular endothelial growth factor failed to protect against staurosporine-induced, caspase-dependent apoptosis. These data suggest that VEGF-induced protection against hypoxic injury primarily involves the inhibition of excitotoxic processes.
Journal of Cell Biology | 2005
Hans Georg König; Donat Kögel; Abdelhaq Rami; Jochen H. M. Prehn
Transforming growth factor-βs (TGF-βs) are pleiotropic cytokines involved in development and maintenance of the nervous system. In several neural lesion paradigms, TGF-β1 exerts potent neuroprotective effects. Neurons treated with TGF-β1 activated the canonical TGF-β receptor I/activin-like kinase receptor 5 (ALK5) pathway. The transcription factor nuclear factor-κB (NF-κB) plays a fundamental role in neuroprotection. Treatment with TGF-β1 enhanced NF-κB activity in gelshift and reporter gene analyses. However, ectopic expression of a constitutively active ALK5 failed to mimic these effects. ALK1 has been described as an alternative TGF-β receptor in endothelial cells. Interestingly, we detected significant basal expression of ALK1 and its injury-induced up-regulation in neurons. Treatment with TGF-β1 also induced a pronounced increase in downstream Smad1 phosphorylation. Overexpression of a constitutively active ALK1 mimicked the effect of TGF-β1 on NF-κB activation and neuroprotection. Our data suggest that TGF-β1 simultaneously activates two distinct receptor pathways in neurons and that the ALK1 pathway mediates TGF-β1–induced NF-κB survival signaling.
Journal of Cell Science | 2003
Heiko Düßmann; Markus Rehm; Donat Kögel; Jochen H. M. Prehn
Little is known about the temporal relationship between mitochondrial and plasma membrane potential changes and outer mitochondrial membrane permeabilization during apoptosis. Confocal imaging of breast carcinoma and HeLa cells stably transfected with cytochrome-C-GFP demonstrated that mitochondria rapidly depolarized after the release of the fusion protein into the cytosol. Of note, mitochondria did not completely depolarize but established a new steady-state level that could be further dissipated by treatment with the protonophore carbonyl cyanide p-trifluoromethoxy-phenylhydrazone. Treatment with the FOF1-ATP-synthase inhibitor oligomycin likewise induced a collapse of this steady-state level, suggesting that FOF1-ATP-synthase reversal maintained mitochondrial potential after outer mitochondrial membrane permeabilization. Treatment with a broad spectrum caspase inhibitor failed to inhibit the partial depolarization of mitochondria during apoptosis, yet potently abolished the activation of effector caspases detected by fluorescence resonance energy transfer analysis in the same experiment. Interestingly, the onset of mitochondrial depolarization was always coupled with a depolarization of the plasma membrane potential. This was associated with the degradation of the regulatory Na+/K+-ATPase β-subunit, and both events were blocked by caspase inhibition. Our results demonstrate that outer mitochondrial membrane permeabilization coordinates the depolarization of both membrane potentials during apoptosis.
Oncogene | 1999
Grit Page; Donat Kögel; Vivek M. Rangnekar; Karl Heinz Scheidtmann
Dlk/ZIP kinase is a newly discovered serine/threonine kinase which, due to its homology to DAP kinase, was named DAP like kinase, Dlk. This kinase is tightly associated with nuclear structures, it undergoes extensive autophosphorylation and phosphorylates myosin light chain and core histones H3, H2A and H4 in vitro. Moreover, it possesses a leucine zipper which mediates interaction with transcription factor ATF-4, therefore it was called ZIP kinase. We employed the yeast two-hybrid system to identify interaction partners of Dlk that might serve as regulators or targets. Besides ATF-4 and others we found Par-4, a modulator of transcription factor WT1 and mediator of apoptosis. Complex formation between Dlk and Par-4 was confirmed by GST pull-down experiments and kinase reactions in vitro and coexpression experiments in vivo. The interaction domain within Dlk was mapped to an arginine-rich region between residues 338 – 417, rather than to the leucine zipper. Strikingly, coexpression of Dlk and Par-4 lead to relocation of Dlk from the nucleus to the cytoplasm, particularly to actin filaments. These interactions provoked a dramatic reorganization of the cytoskeleton and morphological symptoms of apoptosis, thus suggesting a functional relationship between Dlk and Par-4 in the control of apoptosis.
Journal of Neuro-oncology | 2011
Christian Senft; Maike Priester; Margareth Polacin; Katrin Schröder; Volker Seifert; Donat Kögel; Jakob Weissenberger
The objective of current treatment strategies for glioblastoma (GBM) is cytoreduction. Unfortunately, the deleterious migratory and invasive behavior of glial tumors remains largely unattended. The transcription factor signal transducer and activator of transcription (STAT) 3 is known to be involved in the development and progression of many different tumor types, including malignant gliomas. Beside other biological effects, STAT3 controls cell proliferation and tissue remodeling, processes common to both wound healing and tumor dissemination. Here, we report on impeded migratory and invasive potential of five different glioblastoma cell lines after treatment with AG490, a pharmacological inhibitor of the upstream STAT3 activator Janus kinase (JAK) 2. STAT3 was constitutively activated in all the cell lines tested, and treatment with AG490 eliminated the biologically active, tyrosine705-phosphorylated form of STAT3 in a dose-dependent fashion, as determined by Western blot analysis. Inhibition of activated STAT3 was paralleled by a decrease in transcriptional expression of the STAT3 target genes MMP-2 and MMP-9, and led to reduced proteolytic activity, as determined by zymography. Accordingly, the migratory behavior of all five GBM cell lines was impeded in monolayer wound-healing assays; invasive capacity in matrigel-coated trans-well assays was also hampered by treatment with AG490. The proliferative activity of the cell lines was also significantly reduced after treatment with AG490. The effects elicited by STAT3 inhibition were observed in both PTEN-expressing and PTEN-deficient cells. Because pharmacological inhibition of the JAK-2/STAT3 signaling pathway affects not only tumor cell proliferation but also the characteristic features of malignant gliomas, i.e. migration and invasion pertinent to invariable tumor recurrence and high morbidity, our findings support the idea that STAT3 is a suitable target in the treatment of brain tumors.
BMC Cancer | 2010
Christian Senft; Margareth Polacin; Maike Priester; Volker Seifert; Donat Kögel; Jakob Weissenberger
BackgroundNew drugs are constantly sought after to improve the survival of patients with malignant gliomas. The ideal substance would selectively target tumor cells without eliciting toxic side effects. Here, we report on the anti-proliferative, anti-migratory, and anti-invasive properties of the natural, nontoxic compound Curcumin observed in five human glioblastoma (GBM) cell lines in vitro.MethodsWe used monolayer wound healing assays, modified Boyden chamber trans-well assays, and cell growth assays to quantify cell migration, invasion, and proliferation in the absence or presence of Curcumin at various concentrations. Levels of the transcription factor phospho-STAT3, a potential target of Curcumin, were determined by sandwich-ELISA. Subsequent effects on transcription of genes regulating the cell cycle were analyzed by quantitative real-time PCR. Effects on apoptosis were determined by caspase assays.ResultsCurcumin potently inhibited GBM cell proliferation as well as migration and invasion in all cell lines contingent on dose. Simultaneously, levels of the biologically active phospho-STAT3 were decreased and correlated with reduced transcription of the cell cycle regulating gene c-Myc and proliferation marking Ki-67, pointing to a potential mechanism by which Curcumin slows tumor growth.ConclusionsCurcumin is part of the diet of millions of people every day and is without known toxic side effects. Our data show that Curcumin bears anti-proliferative, anti-migratory, and anti-invasive properties against GBM cells in vitro. These results warrant further in vivo analyses and indicate a potential role of Curcumin in the treatment of malignant gliomas.
Neuroscience | 2006
R. Gerlach; G. Demel; Hans-Georg König; U. Gross; Jochen H. M. Prehn; Andreas Raabe; Volker Seifert; Donat Kögel
In patients suffering from cerebrovascular diseases and traumatic brain damage, increases in serum levels of protein S100B are positively correlated with the severity of the insult. Since high concentrations of S100B have been shown to exert neurotoxic effects, the objective of this study was to characterize the regulatory mechanisms underlying control of S100B release from astrocytes. To that end, we analyzed the kinetics and amount of S100B release in correlation with regulation of S100B gene expression in an in vitro ischemia model. Astrocyte cultures were treated with combined oxygen, serum and glucose deprivation, serum and glucose deprivation or hypoxia alone for 6, 12 and 24 h, respectively. While oxygen, serum and glucose deprivation triggered the most rapid release of S100B, serum and glucose deprivation provoked comparable levels of released S100B at the later time points. In contrast to oxygen, serum and glucose deprivation and serum and glucose deprivation, hypoxia alone elicited only marginal increases in secreted S100B. Parallel analysis of extracellular lactate dehydrogenase and the number of viable cells revealed only moderate cell death in the cultures, indicating that S100B was actively secreted during in vitro ischemia. Interestingly, S100B mRNA expression was potently downregulated after 12 and 24 h of oxygen, serum and glucose deprivation, and prolonged oxygen, serum and glucose deprivation for 48 h was associated with a significant reduction of S100B release at later time intervals, whereas lactate dehydrogenase levels remained constant. Our data suggest that secretion of S100B during the glial response to metabolic injury is an early and active process.