Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donatella Barca is active.

Publication


Featured researches published by Donatella Barca.


Transport Theory and Statistical Physics | 1994

Cellular automata for simulating lava flows: A method and examples of the Etnean eruptions

Donatella Barca; Gino Mirocle Crisci; S. Di Gregorio; F. Nicoletta

Abstract This paper presents a bidimensional cellular model for simulating lava flows and its application to the simulation of the 1986–87 and 1991–92 Etnean eruptions. Lava flow is viewed as a dynamic system based on local interactions with discrete time and space, where space is represented by square cells. Each cell is characterized by specific values (the state) of the following selected physical parameters: altitude, lava thickness, lava temperature and lava outflows toward the neighbouring cells. Lava rheology is considered indirectly through its effect on lava thickness. The boundary values constraining a simulation are those describing underlying topography, lava discharge rate, eruption temperature, solidus temperature and rheology. The Cellular Automata model has been tested against growth data for Etnas 1986–87 and 1991–92 flow fields. Even though the data set is heterogeneous, the model and real flow field show strikingly similar growth patterns. The close similarity highlights the flexibilit...


Environmental Science and Pollution Research | 2013

Application of spectrometric analysis to the identification of pollution sources causing cultural heritage damage

Cristina M. Belfiore; Donatella Barca; Alessandra Bonazza; Valeria Comite; M. La Russa; Antonino Pezzino; Silvestro Antonio Ruffolo; Cristina Sabbioni

Black crusts are recognized to have been, up to now, one of the major deterioration forms affecting the built heritage in urban areas. Their formation is demonstrated to occur mainly on carbonate building materials, whose interaction with an SO2-loaded atmosphere leads to the transformation of calcium carbonate (calcite) into calcium sulfate dihydrate (gypsum) which, together with embedded carbonaceous particles, consequently forms the black crusts on the stone surface. An analytical study was carried out on black crust samples collected from limestone monumental buildings and churches belonging to the European built Heritage, i.e., the Corner Palace in Venice (Italy), the Cathedral of St. Rombouts in Mechelen (Belgium), and the Church of St. Eustache in Paris (France). For a complete characterization of the black crusts, an approach integrating different and complementary techniques was used, including laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Fourier transform infrared spectroscopy, optical and scanning electron microscopy. In particular, the application of LA-ICP-MS permitted to obtain a complete geochemical characterization in terms of trace elements of the black crusts from the inner parts to the external layers contributing to the identification of the major combustion sources responsible for the deterioration over time of the monuments under study. In addition, the obtained results revealed a relation between the height of sampling and the concentration of heavy metals and proved that the crust composition can be a marker to evaluate the variation of the fuels used over time.


Science of The Total Environment | 2015

An analysis of the black crusts from the Seville Cathedral: A challenge to deepen the understanding of the relationships among microstructure, microchemical features and pollution sources

Silvestro Antonio Ruffolo; Valeria Comite; Mauro Francesco La Russa; Cristina M. Belfiore; Donatella Barca; Alessandra Bonazza; Gino Mirocle Crisci; Antonino Pezzino; Cristina Sabbioni

The Cathedral of Seville is one of the most important buildings in the whole of southern Spain. It suffers, like most of the historical buildings located in urban environments, from several degradation phenomena related to the high pollution level. Undoubtedly, the formation of black crusts plays a crucial role in the decay of the stone materials belonging to the church. Their formation occurs mainly on carbonate building materials, whose interaction with a sulfur oxide-enriched atmosphere leads to the transformation of calcium carbonate (calcite) into calcium sulfate dihydrate (gypsum) which, together with embedded carbonaceous particles, forms the black crusts on the stone surface. To better understand the composition and the formation dynamics of this degradation product and to identify the pollutant sources and evaluate their impact on the stone material, an analytical study was carried out on the black crust samples collected from different areas of the building. For a complete characterization of the black crusts, several techniques were used, including laser ablation inductively coupled plasma mass spectrometry, Fourier transform infrared spectroscopy, micro infrared spectroscopy, optical and scanning electron microscopy. This battery of tests provided information about the nature and distribution of the mineralogical phases and the elements within the crusts and the crust-substrate interface, contributing to the identification of the major pollution sources responsible for the deterioration of the monument over time. In addition, the results revealed a relation among the height of sampling, the surface exposure and the concentration of heavy metals. Finally, information has been provided about the origin of the concentration gradients of some metals.


Journal of Analytical Atomic Spectrometry | 2011

A new methodological approach for the chemical characterization of black crusts on building stones: a case study from the Catania city centre (Sicily, Italy)

Donatella Barca; Cristina M. Belfiore; Gino Mirocle Crisci; Mauro Francesco La Russa; Antonino Pezzino; Silvestro Antonio Ruffolo

Mineralogical, petrographic and chemical analyses were carried out on black crusts covering the stone surface of monuments and buildings of the historical city centre of Catania, one of the most beautiful Baroque places in eastern Sicily. Black crusts were studied through the careful and synergic employment of traditional techniques, including polarizing optical microscopy (POM), scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM-EDS), and infrared spectroscopic techniques (FT-IR), in combination with an innovative technique, i.e.laser ablation inductively coupled mass spectrometry (LA-ICP-MS). The validity of such an integrated approach to study black crusts has been recently demonstrated by the authors. The main goal of this study was to develop and test the reliability of the LA-ICP-MS method on black crusts in order to evaluate the degree of chemical contamination of examined stones and to determine the role of the different sources of pollution in Catania, both anthropogenic (domestic heating, industrial combustion, vehicular traffic) and natural (emissions by Mt Etna) in the formation of crusts. Results obtained demonstrated that this innovative approach has a double potential in the study of black crusts, since it allows the analysis of alteration and degradation processes induced by migration of specific chemical elements from the crust to substrate, and, at the same time, it represents a reliable indicator of the environmental pollution.


Environmental Pollution | 2016

Trace elements in hazardous mineral fibres.

Andrea Bloise; Donatella Barca; Alessandro F. Gualtieri; Simone Pollastri; Elena Belluso

Both occupational and environmental exposure to asbestos-mineral fibres can be associated with lung diseases. The pathogenic effects are related to the dimension, biopersistence and chemical composition of the fibres. In addition to the major mineral elements, mineral fibres contain trace elements and their content may play a role in fibre toxicity. To shed light on the role of trace elements in asbestos carcinogenesis, knowledge on their concentration in asbestos-mineral fibres is mandatory. It is possible that trace elements play a synergetic factor in the pathogenesis of diseases caused by the inhalation of mineral fibres. In this paper, the concentration levels of trace elements from three chrysotile samples, four amphibole asbestos samples (UICC amosite, UICC anthophyllite, UICC crocidolite and tremolite) and fibrous erionite from Jersey, Nevada (USA) were determined using inductively coupled plasma mass spectrometry (ICP-MS). For all samples, the following trace elements were measured: Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Sb, Cs, Ba, La, Pb, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U. Their distribution in the various mineral species is thoroughly discussed. The obtained results indicate that the amount of trace metals such as Mn, Cr, Co, Ni, Cu and Zn is higher in anthophyllite and chrysotile samples, whereas the amount of rare earth elements (REE) is higher in erionite and tremolite samples. The results of this work can be useful to the pathologists and biochemists who use asbestos minerals and fibrous erionite in-vitro studies as positive cyto- and geno-toxic standard references.


Environmental Science and Pollution Research | 2010

Application of laser ablation ICP-MS and traditional techniques to the study of black crusts on building stones: a new methodological approach

Donatella Barca; Cristina M. Belfiore; Gino Mirocle Crisci; Mauro Francesco La Russa; Antonino Pezzino; Silvestro Antonio Ruffolo

IntroductionIn this work, we propose an innovative application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a methodological approach for the chemical characterisation of black crusts on stone monuments, associated with traditional micro-morphological (optical and scanning electron microscopy) and infrared spectroscopic techniques (FTIR).MethodsThis new approach was tested on black crusts developing on two marble substrates, one, the columns of the San Cosimato cloister in Rome, and the other, a sculpture representing an angel, located in Pessano con Bornago, a small industrial town near Milan.DiscussionThe main aim of this study was to develop and test the reliability of the LA-ICP-MS analytical method on black crusts and to explore the idea that trace element concentrations in black crusts can be applied to investigate their origin and the relations between concentrations of polluting elements in black crusts and environmental conditions.ConclusionThe results obtained by applying traditional techniques find considerable support in the innovative method used here, which could determine the concentrations of a large number of trace elements (including heavy metals) in the black crusts examined, and thus could also be used as a reliable indicator of environmental pollution.


European Journal of Mineralogy | 2009

Magmatic Evolution and plumbing system of ring-fault volcanism: the Vulcanello Peninsula (Aeolian Islands, Italy)

Marcella Davì; Rosanna De Rosa; Paola Donato; Francesco Vetere; Donatella Barca; Andrea Cavallo

The Vulcanello peninsula is situated north of Vulcano, the southernmost island of the Aeolian Arc. It was built at the rim of La Fossa Caldera between 1000 and 1650 A.D. Erupted products are mafic to intermediate in composition, while the coeval products erupted inside the caldera are mainly rhyolitic. Therefore, Vulcanello’s activity represents an anomalous mafic post-caldera volcanism in a convergent setting. A petrographic and geochemical study was carried out on lavas and pyroclastic rocks representing the entire eruptive history of the volcanic centre. New data (major and trace elements and Sr isotope ratios on whole rocks, and major element compositions on mineral phases) and geochemical models were used to investigate shallow level differentiation processes ( i.e. , fractional crystallisation, fractional crystallisation plus crustal assimilation, degassing, magma mixing/recharge). The study suggests that the entire Vulcanello activity can be considered as the uninterrupted expulsion of a single deep magma batch of shoshonitic composition emitted from a NE–SW ring fault of La Fossa Caldera. The magma is genetically related to the shoshonitic basalts found as melt inclusions in the olivine crystals erupted in the products of the 1888–1890 “ La Fossa” activity. This points to a possible single deep plumbing system for both La Fossa Cone and Vulcanello centres, strongly controlled by NW–SE to N– S regional structures. The shoshonitic magma, undergoing fractional crystallisation, partly rose directly to the surface where two strombolian cones were constructed, while residual magma remained at depth, and, partially degassed and crystallised, it subsequently erupted both effusively to form a lava platform and explosively to form a third pyroclastic cone. The remaining magma evolved to latite by AFC process and was erupted both as a lava flow (Punta del Roveto) and in the form of pyroclastic products ( i.e. , the upper part of the third cone), controlled by shallow ring faults of La Fossa Caldera. Therefore the Vulcanello plumbing system is controlled by tectonic structures at depth and by shallower volcano-tectonic (caldera) fractures.


European Journal of Mineralogy | 2014

Mosaic marble tesserae from the underwater archaeological site of Baia (Naples, Italy): determination of the provenance

Michela Ricca; Mauro Francesco La Russa; Silvestro Antonio Ruffolo; Barbara Davidde; Donatella Barca; Gino Mirocle Crisci

This paper is focused on defining the geographic provenance of eight marble tesserae of archaeological interest used for the opus sectile floor slabs of the Villa con ingresso a protiro , located in the Roman underwater Archaeological Park of Baia (Naples, Italy). Geochemical, isotopic and petrographic data show that Carrara, Thasian and Docimium/Afyon marbles were used in manufacturing the mosaic constituting the floor slabs of the Roman Villa.


Geophysical monograph | 2013

Application of the cellular automata model SCIARA to the 2001 Mount Etna crisis

Donatella Barca; Gino Mirocle Crisci; Rocco Rongo; Salvatore Di Gregorio; William Spataro

The prediction of a lava flow path presents an important scientific goal, but is challenging due to the computational complexity of the physical equations that simulate lava flow behaviour (e.g. Navier-Stokes differential equation systems). SCIARA is an empirical cellular automata-based model for simulating aa lava flows that was recently successfully tested during eruptive activity on Mt. Etna, Italy. The main advantages of the SCIARA model are its computational robustness, good quality simulations and short computation time (one hour of Pentium 4-based personal computer time allows simulation of a 2500 by 2500 hexagonal cell grid with apothem of 5 m). This paper summarizes the simulations performed during the 2001 Mt. Etna eruption that demonstrated and validated the SCIARA model for lava flow risk assessment and mitigation. The simulations concentrate on the lava flows generated by the fracture of Monti Calcarazzi, 2100 m a.s.l., that threatened the towns of Nicolosi and Belpasso.


Science of The Total Environment | 2017

The Oceanus statue of the Fontana di Trevi (Rome): The analysis of black crust as a tool to investigate the urban air pollution and its impact on the stone degradation

Mauro Francesco La Russa; P. Fermo; Valeria Comite; Cristina M. Belfiore; Donatella Barca; Annamaria Cerioni; Marina De Santis; Lorena Francesca Barbagallo; Michela Ricca; Silvestro Antonio Ruffolo

This paper deals with the analysis of black crust coming from the statue of Oceanus belonging to the Fontana di Trevi (Rome). This monument is undoubtedly one of the main touristic attractions of Rome. During the restoration held between 2014 and 2015, some diagnostic analyses had been carried out. It has been highlighted that the sheltered surfaces suffer the formation of black crust, especially on the marble statues. The possibility to sample those degradation products, together with the unaltered substrate, represented an excellent opportunity to characterize the marble itself, to assess the impact of the urban air pollution on the stone material, and to detect the pollutant on a precise timescale. In fact, it is known that the previous restoration of the fountain had been carried out between 1989 and 1991 then, information about the air pollution over the last 25years can be highlighted, because it has been proved that black crusts act as passive samplers of pollution. In order to fully characterize those samples, several techniques were used, including optical and scanning electron microscopy, X-ray diffraction, laser ablation inductively coupled plasma mass spectrometry, infrared spectroscopy and ion chromatography. Furthermore, a new methodology based on CHN (Carbon, Hydrogen, Nitrogen) analysis has been developed for the quantification of the two main constituents of the carbonaceous fraction present in the black crusts, i.e. OC (organic carbon) and EC (elemental carbon). This integrated approach proposed in the present study allowed us to gain information about the mineralogical phases and the elements within the crusts and at the crust-substrate interface, giving the possibility to identify the pollution sources causing the stone decay within the monument.

Collaboration


Dive into the Donatella Barca's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge