Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donatella Farini is active.

Publication


Featured researches published by Donatella Farini.


Oncogene | 2007

The RNA-binding protein Sam68 contributes to proliferation and survival of human prostate cancer cells

Roberta Busà; Donatella Farini; E Pierantozzi; F Botti; D F Angelini; F Attisani; Giuseppe Vespasiani; Claudio Sette

The tyrosine kinase Src is frequently activated in advanced human prostate carcinomas and its activation correlates with tyrosine phosphorylation of the RNA-binding protein Sam68. Herein, we have investigated the expression and function of Sam68 in human prostate cancer cells. Analysis of specimens obtained from 20 patients revealed that Sam68 is upregulated at the protein level in 35% of the samples. Real-time polymerase chain reaction confirmed the results at the mRNA level in most patients. Downregulation of Sam68 by RNAi in LNCaP prostate cancer cells delayed cell cycle progression and reduced the proliferation rate. Moreover, depletion of Sam68 sensitized cells to apoptosis induced by DNA-damaging agents. Similarly, stable cell lines expressing a truncated GFP-Sam68GSG protein displayed reduced growth rates and higher sensitivity to cisplatin-induced apoptosis. Microarray analyses revealed that a subset of genes involved in proliferation and apoptosis were altered when Sam68 was knocked down in LNCaP cells. Our results indicate that Sam68 expression supports prostate cancer cells proliferation and survival to cytotoxic agents.


American Journal of Pathology | 2004

Expression of a Truncated Form of the c-Kit Tyrosine Kinase Receptor and Activation of Src Kinase in Human Prostatic Cancer

Donatella Farini; Innocenzo Sammarco; Giovanni Maturo; Giuseppe Vespasiani; Raffaele Geremia; Pellegrino Rossi; Claudio Sette

A truncated form of the c-Kit tyrosine kinase receptor, originally identified in mouse haploid germ cells, is aberrantly expressed in human cancer cell lines of various origin. This alternative transcript originates in the 15th intron of the human c-kit gene. We have previously demonstrated that sperm-carried mouse truncated c-Kit (tr-Kit) is a strong activator of the Src-family tyrosine kinases both in transfected cells and in mouse oocytes. In the present work, we report that human tr-Kit mRNA and protein are expressed in LNCaP prostatic cancer cells. We have identified two regions in the 15th and 16th introns of the human c-kit gene that show homology with sequences in the spermatid-specific tr-Kit promoter within the 16th intron of mouse c-kit. We also show that nuclear factors present in LNCaP cells bind to discrete sequences of the mouse tr-Kit promoter. Moreover, Western blot analysis of 23 primary prostate cancers indicated that tr-Kit was expressed in approximately 28% of the tumors at less advanced stages (Gleason grade 4 to 6) and in 66% of those at more advanced stages (Gleason grade 7 to 9), whereas it was not expressed in benign prostatic hypertrophies. Sequencing of the cDNA for the truncated c-Kit, amplified from both LNCaP cells and neoplastic tissues, confirmed the existence in prostate cancer cells of a transcript arising from the 15th intron of human c-kit. We also show that tr-Kit-expressing LNCaP cells and prostatic tumors have higher levels of phosphorylated/activated Src than tr-Kit-negative PC3 cells or prostatic tumors, and that transfection of tr-Kit in PC3 cells caused a dramatic increase in Src activity. Interestingly, we found that Sam68, a RNA-binding protein phosphorylated by Src in mitosis, is phosphorylated only in prostate tumors expressing tr-Kit. Indeed, both activation of Src and phosphorylation of Sam68 were observed in all of the three grade 7 to 9 tumors analyzed that expressed tr-Kit. Our data describe for the first time the existence of a truncated c-Kit protein in primary tumors and show a correlation between tr-Kit expression and activation of the Src pathway in the advanced stages of the disease. Thus, these results might pave the way for the elucidation of a novel pathway in neoplastic transformation of prostate cells.


Reproductive Biomedicine Online | 2005

Establishment of oocyte population in the fetal ovary: primordial germ cell proliferation and oocyte programmed cell death

Massimo De Felici; Francesca Gioia Klinger; Donatella Farini; Maria Lucia Scaldaferri; Saveria Iona; Mara Lobascio

Strict control of cell proliferation and cell loss is essential for the coordinated functions of different cell populations in complex multicellular organisms. Oogenesis is characterized by a first phase occurring during embryo-fetal life and in common with spermatogenesis, during which mitotic proliferation of the germline stem cells, the primordial germ cells (PGC), prevails over germ cell death. The result is the formation of a relatively high number of germ cells depending on the species, ready to enter sex specific differentiation. In the female, PGC enter into meiosis and become oocytes, thereby ending their stem cell potential. After entering into meiosis in the fetal ovary, oocytes pass through leptotene, zygotene and pachytene stages before arresting in the last stage of meiotic prophase I, the diplotene or dictyate stage at about the time of birth. The most part of oocytes die during the fetal period or shortly after birth. It is widely accepted that in mammals a female is born with a fixed number of oocytes within the ovaries, which over the years progressively decreases without possibility for renewal. Once the oocyte reserve has been exhausted, ovarian senescence, driving what is referred to as the menopause in women, rapidly ensues. The fertile lifespan of a female depends by the size of the oocyte pool at birth and the rapidity of the oocyte pool depletion. Which mechanisms control PGC proliferation? Why do most of the oocytes die during fetal life and what are the mechanisms of such massive degeneration? Is it possible to prolong the lifespan of a female by reducing oocyte lost during the fetal life? This review reports some of the most recent results obtained in an attempt to answer these questions.


Journal of Biological Chemistry | 2009

STRA8 Shuttles between Nucleus and Cytoplasm and Displays Transcriptional Activity

Marianna Tedesco; Gina La Sala; Federica Barbagallo; Massimo De Felici; Donatella Farini

Stra8 (stimulated by retinoic acid 8) encodes a protein crucial for mammalian germ cells entering into premeiotic stages. Here, to elucidate the still unknown STRA8 molecular functions, we studied the cellular localization of the protein in several cell types, including premeiotic mouse germ cells and stem cell lines. We reported distinct STRA8 localization in germ and stem cell types and a heterogeneous protein distribution in the cytoplasm and nucleus of such cells suggesting that the protein can shuttle between these two compartments. Moreover, we identified specific protein motifs determining its nuclear import/export. Furthermore, we demonstrated that in transfected cell lines the nuclear import of STRA8 is an active process depending on an N-terminal basic nuclear localization signal. Moreover, its nuclear export is mainly mediated by the Exportin1 (XPO1) recognition of a nuclear export signal. Significantly, we also demonstrated that STRA8 associates with DNA and possesses transcriptional activity. These observations strongly suggest that STRA8 can exert important functions in the nucleus rather than in the cytoplasm as believed previously, likely depending on the cell type and regulated by its nuclear-cytoplasmic shuttling.


Reproduction | 2007

Analysis of programmed cell death in mouse fetal oocytes.

A. M. Lobascio; F Klinger; Maria-Lucia Scaldaferri; Donatella Farini; M. De Felici

We report a short-term culture system that allows to define novel characteristic of programmed cell death (PCD) in fetal oocytes and to underscore new aspects of this process. Mouse fetal oocytes cultured in conditions allowing meiotic prophase I progression underwent apoptotic degeneration waves as revealed by TUNEL staining. TEM observations revealed recurrent atypical apoptotic morphologies characterized by the absence of chromatin margination and nuclear fragmentation; oocytes with autophagic and necrotic features were also observed. Further characterization of oocyte death evidenced DNA ladder, Annexin V binding, PARP cleavage, and usually caspase activation (namely caspase-2). In the aim to modulate the oocyte death process, we found that the addition to the culture medium of the pan-caspase inhibitors Z-VAD or caspase-2-specific inhibitor Z-VDVAD resulted in a partial and transient prevention of this process. Oocyte death was significantly reduced by the antioxidant agent NAC and partly prevented by KL and IGF-I growth factors. Finally, oocyte apoptosis was reduced by calpain inhibitor I and increased by rapamycin after prolonged culture. These results support the notion that fetal oocytes undergo degeneration mostly by apoptosis. This process is, however, often morphologically atypical and encompasses other forms of cell death including caspase-independent apoptosis and autophagia. The observation that oocyte death occurs mainly at certain stages of meiosis and can only be attenuated by typical anti-apoptotic treatments favors the notion that it is controlled at least in part by stage-specific oocyte-autonomous meiotic checkpoints and when activated is little amenable to inhibition being the oocyte able to switch back and forth among different death pathways.


Current Stem Cell Research & Therapy | 2009

In or Out Stemness: Comparing Growth Factor Signalling in Mouse Embryonic Stem Cells and Primordial Germ Cells

Massimo De Felici; Donatella Farini; Susanna Dolci

Embryonic stem (ES) cells do not exist in nature but, usually produced from the inner cell mass (ICM) of the blastocyst, are considered equivalent to ICM cells captured during a short period of transient self-renewal and pluripotency capability. Although, artificial, ES cells represent a formidable model to investigate fundamental aspects of cell stemness and early embryo development. ES cells are indeed the only stem cell type able to indefinite self-renewal and to differentiate into cellular derivates of ectodermal, mesodermal and endodermal lineages. Recent extensive studies have revealed that ES cells maintain self-renewal and pluripotency because of a self-organizing network of transcription factors and intracellular pathways activated by extracellular signalling that together prevent their differentiation and promote their proliferation, and because of epigenetic processes that maintain the chromatin in a plastic differentiation status. Primordial germ cells (PGCs), the embryonic precursors of gametes, because of their unique ability to retain true developmental totipotency, are considered the mother of all stem cells. Despite several similarities with ES cells, they display only transient self-renewal capability and distinct lineage-specific characteristics. In fact, in normal condition PGCs are believed to differentiate into germ cells only, oogonia/oocytes in the female, and prospermatogonia in the male which ultimately produce eggs and sperm, respectively. It is not until the fertilization of the egg or parthenogenesis that the intrinsic germ cell totipotency program is revealed. Many aspects of the extrinsic factors and signalling required for ES cell self-renewal and pluripotency have been identified and dissected. On the other hand, several extrinsic factors controlling PGC development have been identified, but the underlying molecular signalling remains little defined. In the present review, by comparing the available information about signalling elicited by four growth factors such as leukaemia inhibitory factor (LIF), bone morphogenic protein 4 (BMP4), fibroblast growth factor 2 (FGF2) and kit ligand (KL) in mouse ES cells and PGCs, on which most of such studies have been performed, we aimed to give clues for the molecular understanding of the similarities and differences between these two unique cell types and to explain how apparent contradictory properties such as lineage-specific characteristics and pluripotency may coexist within PGCs. The first two growth factors have been demonstrated to control key aspects of the self-renewal and pluripotency of ES cells. BMP4 and KL are known for their crucial role in regulating various process of PGC development in the embryo from the formation of PGC precursors and PGC specification (BMP4) to their survival, proliferation and migration (KL). Moreover, the combined action of LIF, FGF2 and KL is necessary and sufficient for PGC transformation into ES-like cells termed embryonic germ (EG) cells.


Frontiers in Bioscience | 2005

Adhesion molecules for mouse primordial germ cells

M De Felici; Maria-Lucia Scaldaferri; Donatella Farini

In the present article we will focus on the adhesion molecules expressed by mouse primordial germ cells (PGCs) and will discuss the role that they play, or are believed to play, in two crucial processes of PGC development, namely cell lineage specification and migration into the gonadal ridges. Recent findings indicate that the adhesion-dependent allocation of the PGC precursors to a niche within the epiblast and the forming extraembryonic mesoderm during the pre-gastrulation period is crucial for their commitment. Subsequently, PGC migration and homing within the gonadal ridges require integrated signals involving contact of PGCs with extracellular matrix molecules and cellular substrates or repulsion from them, adhesion among PGCs themselves and attraction by the developing gonads. A number of adhesion, or putative adhesion molecules, have been identified in mammalian PGCs, mainly in the mouse. These molecules belong to three adhesion molecule families such as cadherins (E-P- and N-cadherins), integrins and the IgG superfamily (PECAM-1). Moreover oligosaccarides (LewisX) and growth factor receptors (c-Kit) can also play adhesive roles in some stages of PGC development. An understanding of how genes encoding adhesive molecules are regulated in PGCs and the molecular pathways associated with the functions of adhesion receptors is crucial in furthering our knowledge of PGC biology. Adhesion molecules might once again turn out to be crucial in controlling not only the germ cell lineage and PGC migration but also the PGC differentiation fate itself.


Journal of Cell Science | 2004

Expression and role of PDGF-BB and PDGFR-beta during testis morphogenesis in the mouse embryo

Antonella Puglianiello; Luisa Campagnolo; Donatella Farini; Daria Cipollone; Mario A. Russo; G. Siracusa

The role played by PDGF in testis morphogenesis is still incompletely understood. The present study investigates the expression and potential role of platelet-derived growth factor-BB (PDGF-BB) and its receptor, PDGF receptor β (PDGFR-β), during mouse testis cord formation, and the possibility that the growth factor may be involved in the migration to the gonad of mesenchymal cells of mesonephric origin. Studies from this laboratory have previously shown that mesenchymal cells that migrate from the mesonephros into the gonad, to form peritubular myoid cells and most of the intertubular cells, can be identified by the presence on their surface of the p75 neurotrophin receptor (p75NTR), and can be isolated to near-purity by immunomagnetic selection with anti-p75NTR antibody. We show here that mesonephric p75NTR(+) cells also bear the PDGFR-β, and are able to migrate and proliferate in vitro in response to PDGF-BB. PDGF-BB is expressed at higher levels in male than female developing gonads, suggesting a role for this factor in testis development. Such a role is further supported by the observation that addition of PDGF-BB to serum-free medium is sufficient to allow organ-cultured male 11.5 days post-coitum urogenital ridges to form testis cords. Finally, we show that mesonephric cell motility and growth induced by exposure to PDGF-BB involve mitogen-activated protein kinases (MAPK) and phosphatidylinositol-3 kinase (PI3-K) pathways, as MAPK inhibitor U0126 and PI3K inhibitor Ly294002 inhibit migration and proliferation in vitro assays. The present findings support the hypothesis that the PDGF/PDGFR system plays a key role in testis morphogenesis in the mouse embryo.


Experimental Cell Research | 2010

Rapid estrogen signalling in mouse primordial germ cells.

Gina La Sala; Donatella Farini; Massimo De Felici

We report here that in the mouse embryonic gonads in addition to gonadal somatic cells, primordial germ cells (PGCs) the precursors of adult gametes, express estrogen receptor alpha (ERalpha) and that through this receptor, 17-beta-estradiol (E2) is able to modulate in such cells molecular signalling known to be crucial for their development. We demonstrated that PGCs from 11.5 to 12.5 days post coitum (dpc) mouse embryos express ERalpha transcripts and protein and that at concentrations of 10(-8)M E2 stimulates rapid (within 20 min) about 4-fold AKT (Ser473) and 3-fold ERK2 (Thr202/Tyr204) and SRC (Tyr418) phosphorylation. In addition, the E2 stimulatory effects were associated with increased phosphorylation of the KIT receptor (Tyr568/570). While the ER antagonist ICI182780 was able to abolish these effects, AKT phosphorylation induced by E2 was also inhibited by the PI3K inhibitor LY294002 and the SRC family inhibitor PP2. This latter was also able to abolish the increased phosphorylation of KIT and ERKs caused by E2. Taken together these results suggest that E2 may modulate via ERalpha non-genomic signalling/phosphorylation cascade in mouse PGCs. This was also supported by the finding that PGCs express MNAR, a scaffold protein that regulate ER activation in other cell types. Finally, we found that when PGCs were cultured in the presence of 10(-8)M E2 a significant ICI inhibitable increase of their number occurred. The present study provides evidence for novel direct non-genomic actions of estrogens on PGCs and suggests that these cells can represent a potential target for estrogens and estrogenic compounds during the early stages of embryo development in mammals.


Biology of Reproduction | 2013

Minimal Concentrations of Retinoic Acid Induce Stimulation by Retinoic Acid 8 and Promote Entry into Meiosis in Isolated Pregonadal and Gonadal Mouse Primordial Germ Cells

Marianna Tedesco; Maria Giovanna Desimio; Francesca Gioia Klinger; Massimo De Felici; Donatella Farini

ABSTRACT In the present study, we demonstrate that minimal concentrations (≤1 nM) of retinoic acid (RA), equivalent to the quantity contaminating serum-containing culture medium, are sufficient to promote meiotic entry and progression through meiotic prophase I (MPI) stages in isolated 12.5-days postcoitum (dpc) XX and XY mouse primordial germ cells (PGCs) in culture. Similarly, we found that the same low RA concentration up-regulated or induced stimulation by retinoic acid 8 (Stra8) in such cells, both at mRNA and protein level. In preleptotene/leptotene germ cells, STRA8 was localized in nuclear dots that disappeared at later MPI stages. In addition to Stra8, other meiotic genes such as Dmc1 and Rec8 appeared stimulated by RA directly in PGCs with similar concentration-dependent trends. Finally, we found that RA induced Stra8, Sycp3, Dmc1, and Rec8 transcripts, promoting meiotic entry in culture also in pregonadal 10.5-dpc PGCs of both sexes. When cultured isolated from somatic cells, such PGCs, however, were unable to progress through MPI stages, while after entering meiosis, they progressed through MPI when cultured within aorta/gonad/mesonephros tissues. We conclude that besides RA, germ cell intrinsic factors and other exogenous signals from the surrounding somatic cells are probably necessary for meiotic entry and progression in mouse PGCs.

Collaboration


Dive into the Donatella Farini's collaboration.

Top Co-Authors

Avatar

Massimo De Felici

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Francesca Gioia Klinger

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Marianna Tedesco

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Gina La Sala

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Luisa Campagnolo

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Maria Lucia Scaldaferri

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Gregorio Siracusa

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Ml Giustizieri

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Claudio Sette

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Eleonora Sorrentino

University of Rome Tor Vergata

View shared research outputs
Researchain Logo
Decentralizing Knowledge