Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donatella Zona is active.

Publication


Featured researches published by Donatella Zona.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Cold season emissions dominate the Arctic tundra methane budget

Donatella Zona; Beniamino Gioli; R. Commane; Jakob Lindaas; Steven C. Wofsy; Charles E. Miller; Steven J. Dinardo; Sigrid Dengel; Colm Sweeney; Anna Karion; Rachel Chang; John M. Henderson; Patrick C. Murphy; Jordan Paul Goodrich; Virginie Moreaux; Anna Liljedahl; Jennifer D. Watts; John S. Kimball; David A. Lipson; Walter C. Oechel

Significance Arctic ecosystems are major global sources of methane. We report that emissions during the cold season (September to May) contribute ≥50% of annual sources of methane from Alaskan tundra, based on fluxes obtained from eddy covariance sites and from regional fluxes calculated from aircraft data. The largest emissions were observed at the driest site (<5% inundation). Emissions of methane in the cold season are linked to the extended “zero curtain” period, where soil temperatures are poised near 0 °C, indicating that total emissions are very sensitive to soil climate and related factors, such as snow depth. The dominance of late season emissions, sensitivity to soil conditions, and importance of dry tundra are not currently simulated in most global climate models. Arctic terrestrial ecosystems are major global sources of methane (CH4); hence, it is important to understand the seasonal and climatic controls on CH4 emissions from these systems. Here, we report year-round CH4 emissions from Alaskan Arctic tundra eddy flux sites and regional fluxes derived from aircraft data. We find that emissions during the cold season (September to May) account for ≥50% of the annual CH4 flux, with the highest emissions from noninundated upland tundra. A major fraction of cold season emissions occur during the “zero curtain” period, when subsurface soil temperatures are poised near 0 °C. The zero curtain may persist longer than the growing season, and CH4 emissions are enhanced when the duration is extended by a deep thawed layer as can occur with thick snow cover. Regional scale fluxes of CH4 derived from aircraft data demonstrate the large spatial extent of late season CH4 emissions. Scaled to the circumpolar Arctic, cold season fluxes from tundra total 12 ± 5 (95% confidence interval) Tg CH4 y−1, ∼25% of global emissions from extratropical wetlands, or ∼6% of total global wetland methane emissions. The dominance of late-season emissions, sensitivity to soil environmental conditions, and importance of dry tundra are not currently simulated in most global climate models. Because Arctic warming disproportionally impacts the cold season, our results suggest that higher cold-season CH4 emissions will result from observed and predicted increases in snow thickness, active layer depth, and soil temperature, representing important positive feedbacks on climate warming.


Proceedings of the National Academy of Sciences of the United States of America | 2015

The uncertain climate footprint of wetlands under human pressure

A.M.R. Petrescu; Annalea Lohila; Juha-Pekka Tuovinen; Dennis D. Baldocchi; Ankur R. Desai; Nigel T. Roulet; Timo Vesala; A. J. Dolman; Walter C. Oechel; Barbara Marcolla; Thomas Friborg; Janne Rinne; Jaclyn Hatala Matthes; Lutz Merbold; Ana Meijide; Gerard Kiely; Matteo Sottocornola; Torsten Sachs; Donatella Zona; Andrej Varlagin; Derrick Y.F. Lai; Elmar M. Veenendaal; Frans-Jan Parmentier; U. Skiba; Magnus Lund; A. Hensen; Jacobus van Huissteden; Lawrence B. Flanagan; Narasinha J. Shurpali; Thomas Grünwald

Significance Wetlands are unique ecosystems because they are in general sinks for carbon dioxide and sources of methane. Their climate footprint therefore depends on the relative sign and magnitude of the land–atmosphere exchange of these two major greenhouse gases. This work presents a synthesis of simultaneous measurements of carbon dioxide and methane fluxes to assess the radiative forcing of natural wetlands converted to agricultural or forested land. The net climate impact of wetlands is strongly dependent on whether they are natural or managed. Here we show that the conversion of natural wetlands produces a significant increase of the atmospheric radiative forcing. The findings suggest that management plans for these complex ecosystems should carefully account for the potential biogeochemical effects on climate. Significant climate risks are associated with a positive carbon–temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the “cost” of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse–response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange.


Ecological Applications | 2013

Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA).

Masahito Ueyama; Hiroki Iwata; Yoshinobu Harazono; Eugénie S. Euskirchen; Walter C. Oechel; Donatella Zona

To better understand the spatial and temporal dynamics of CO2 exchange between Arctic ecosystems and the atmosphere, we synthesized CO2 flux data, measured in eight Arctic tundra and five boreal ecosystems across Alaska (USA) and identified growing season and spatial variations of the fluxes and environmental controlling factors. For the period examined, all of the boreal and seven of the eight Arctic tundra ecosystems acted as CO2 sinks during the growing season. Seasonal patterns of the CO2 fluxes were mostly determined by air temperature, except ecosystem respiration (RE) of tundra. For the tundra ecosystems, the spatial variation of gross primary productivity (GPP) and net CO2 sink strength were explained by growing season length, whereas RE increased with growing degree days. For boreal ecosystems, the spatial variation of net CO2 sink strength was mostly determined by recovery of GPP from fire disturbance. Satellite-derived leaf area index (LAI) was a better index to explain the spatial variations of GPP and NEE of the ecosystems in Alaska than were the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). Multiple regression models using growing degree days, growing season length, and satellite-derived LAI explained much of the spatial variation in GPP and net CO2 exchange among the tundra and boreal ecosystems. The high sensitivity of the sink strength to growing season length indicated that the tundra ecosystem could increase CO2 sink strength under expected future warming, whereas ecosystem compositions associated with fire disturbance could play a major role in carbon release from boreal ecosystems.


Ecology | 2011

Light‐stress avoidance mechanisms in a Sphagnum‐dominated wet coastal Arctic tundra ecosystem in Alaska

Donatella Zona; Walter C. Oechel; James H. Richards; Steven J. Hastings; Irene Kopetz; Hiroki Ikawa; Steven F. Oberbauer

The Arctic experiences a high-radiation environment in the summer with 24-hour daylight for more than two months. Damage to plants and ecosystem metabolism can be muted by overcast conditions common in much of the Arctic. However, with climate change, extreme dry years and clearer skies could lead to the risk of increased photoxidation and photoinhibition in Arctic primary producers. Mosses, which often exceed the NPP of vascular plants in Arctic areas, are often understudied. As a result, the effect of specific environmental factors, including light, on these growth forms is poorly understood. Here, we investigated net ecosystem exchange (NEE) at the ecosystem scale, net Sphagnum CO2 exchange (NSE), and photoinhibition to better understand the impact of light on carbon exchange from a moss-dominated coastal tundra ecosystem during the summer season 2006. Sphagnum photosynthesis showed photoinhibition early in the season coupled with low ecosystem NEE. However, later in the season, Sphagnum maintained a significant CO2 uptake, probably for the development of subsurface moss layers protected from strong radiation. We suggest that the compact canopy structure of Sphagnum reduces light penetration to the subsurface layers of the moss mat and thereby protects the active photosynthetic tissues from damage. This stress avoidance mechanism allowed Sphagnum to constitute a significant percentage (up to 60%) of the ecosystem net daytime CO2 uptake at the end of the growing season despite the high levels of radiation experienced.


Gcb Bioenergy | 2013

N2O fluxes of a bio‐energy poplar plantation during a two years rotation period

Donatella Zona; Ivan A. Janssens; Beniamino Gioli; Hermann F. Jungkunst; Marta C. Serrano; R. Ceulemans

Nitrous oxide emissions are of critical importance for the assumed climate neutrality of bio‐energy. In this study we report on the N2O fluxes from a bio‐energy poplar plantation measured with eddy covariance for 2 years, after conversion of agricultural fields to few months after harvesting of the plantation. A pulse peak of N2O was detected after the land use change and in the wake of the first heavy rainfall. The N2O‐N emission during just a single week was 2.7 kg N2O‐N ha−1 which represented approximately 42% of the total N2O‐N emitted during the 2 years of measurements. After this peak emission, N2O fluxes were constantly rather low, not increasing after rainfall events any longer. Lowest emissions (and even N2O sink) occurred mostly during the end of the second growing season with maximum canopy development, and water table deeper than 80 cm. Gross primary production (GPP) explained 68% of the monthly averaged variability in N2O emission from August to December 2011. Probably N uptake by vegetation during the peak of the second growing season limited N2O emission, which in fact increased again after the plantation was coppiced. For the majority of the measuring period, N2O fluxes did not present a well‐defined diurnal pattern, with the exception of two periods: (1) from 19–22 August 2010 and (2) from September–November 2011. In both cases wind speed played a major role in controlling the diurnal pattern in these fluxes (explaining up to 80% of the diurnal variability in N2O fluxes on 19–22 August 2010), whereas at the end of the second growing season (September–November 2011), GPP explained 73% of the diurnal pattern in N2O fluxes.


Global Biogeochemical Cycles | 2012

Increased CO2 loss from vegetated drained lake tundra ecosystems due to flooding

Donatella Zona; David A. Lipson; Kyaw Tha Paw U; S. F. Oberbauer; Paulo C. Olivas; Beniamino Gioli; Walter C. Oechel

Tundra ecosystems are especially sensitive to climate change, which is particularly rapid in high northern latitudes resulting in significant alterations in temperature and soil moisture. Numerous studies have demonstrated that soil drying increases the respiration loss from wet Arctic tundra. And, warming and drying of tundra soils are assumed to increase CO 2 emissions from the Arctic. However, in this water table manipulation experiment (i.e., flooding experiment), we show that flooding of wet tundra can also lead to increased CO 2 loss. Standing water increased heat conduction into the soil, leading to higher soil temperature, deeper thaw and, surprisingly, to higher CO 2 loss in the most anaerobic of the experimental areas. The study site is located in a drained lake basin, and the soils are characterized by wetter conditions than upland tundra. In experimentally flooded areas, high wind speeds (greater than ~4 m s −1 ) increased CO 2 emission rates, sometimes overwhelming the photosynthetic uptake, even during daytime. This suggests that CO 2 efflux from C rich soils and surface waters can be limited by surface exchange processes. The comparison of the CO 2 and CH 4 emission in an anaerobic soil incubation experiment showed that in this ecosystem, CO 2 production is an order of magnitude higher than CH 4 production. Future increases in surface water ponding, linked to surface subsidence and thermokarst erosion, and concomitant increases in soil warming, can increase net C efflux from these arctic ecosystems.


Gcb Bioenergy | 2014

The effect of a dry spring on seasonal carbon allocation and vegetation dynamics in a poplar bioenergy plantation

L.S. Broeckx; M.S. Verlinden; G. Berhongaray; Donatella Zona; Régis Fichot; R. Ceulemans

In this study the seasonal variation in carbon, water and energy fluxes as well as in net primary productivity (NPP) of different tree components is presented for a 2‐year‐old poplar (Populus spp.) plantation. A thorough ecophysiological study was performed at ecosystem scale, at tree and at leaf level, in this high‐density bioenergy plantation. Seasonal variation in NPP and fluxes was analysed in relation to meteorological parameters at the field site. The growing season length in terms of carbon uptake was controlled by leaf area development until the maximum leaf area index (LAImax) was reached. Afterwards, a shift to belowground carbon allocation was observed. A dry period in spring caused a reduced leaf area production as well as a decrease in net ecosystem exchange and gross primary production (GPP) due to stomatal closure. Water use efficiency and fine root growth increased in response to limiting soil water availability in the root zone. When soil water availability was not limiting, GPP was controlled by a decrease in solar radiation and air temperature. The results of this study indicate that the productivity of recently established bioenergy plantations with fast‐growing trees is very sensitive to drought. The interaction between soil water availability and factors controlling ecosystem GPP is crucial in assessing the CO2 mitigation potential under future climate conditions.


Environmental Pollution | 2014

Environmental controls on ozone fluxes in a poplar plantation in Western Europe.

Donatella Zona; Beniamino Gioli; Silvano Fares; T. De Groote; Kim Pilegaard; Andreas Ibrom; R. Ceulemans

Tropospheric O3 is a strong oxidant that may affect vegetation and human health. Here we report on the O3 fluxes from a poplar plantation in Belgium during one year. Surprisingly, the winter and autumn O3 fluxes were of similar magnitude to ones observed during most of the peak vegetation development. Largest O3 uptakes were recorded at the beginning of the growing season in correspondence to a minimum stomatal uptake. Wind speed was the most important control and explained 44% of the variability in the nighttime O3 fluxes, suggesting that turbulent mixing and the mechanical destruction of O3 played a substantial role in the O3 fluxes. The stomatal O3 uptake accounted for a seasonal average of 59% of the total O3 uptake. Multiple regression and partial correlation analyses showed that net ecosystem exchange was not affected by the stomatal O3 uptake.


Geophysical Research Letters | 2017

Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence

Kristina A. Luus; R. Commane; N. C. Parazoo; Joshua Benmergui; Eugénie S. Euskirchen; Christian Frankenberg; Joanna Joiner; Jakob Lindaas; Charles E. Miller; Walter C. Oechel; Donatella Zona; S. C. Wofsy; John C. Lin

Accurately quantifying the timing and magnitude of respiration and photosynthesis by high-latitude ecosystems is important for understanding how a warming climate influences global carbon cycling. Data-driven estimates of photosynthesis across Arctic regions often rely on satellite-derived enhanced vegetation index (EVI); we find that satellite observations of solar-induced chlorophyll fluorescence (SIF) provide a more direct proxy for photosynthesis. We model Alaskan tundra CO2 cycling (2012–2014) according to temperature and shortwave radiation, and alternately input EVI or SIF to prescribe the annual seasonal cycle of photosynthesis. We find that EVI-based seasonality indicates spring “green-up” to occur nine days prior to SIF-based estimates, and that SIF-based estimates agree with aircraft and tower measurements of CO_2. Adopting SIF, instead of EVI, for modeling the seasonal cycle of tundra photosynthesis can result in more accurate estimates of growing season duration and net carbon uptake by arctic vegetation.


Gcb Bioenergy | 2016

CO2 uptake is offset by CH4 and N2O emissions in a poplar short-rotation coppice

Terenzio Zenone; Donatella Zona; Ilya Gelfand; Bert Gielen; Marta Camino-Serrano; R. Ceulemans

The need for renewable energy sources will lead to a considerable expansion in the planting of dedicated fast‐growing biomass crops across Europe. These are commonly cultivated as short‐rotation coppice (SRC), and currently poplar (Populus spp.) is the most widely planted. In this study, we report the greenhouse gas (GHG) fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) measured using eddy covariance technique in an SRC plantation for bioenergy production. Measurements were made during the period 2010–2013, that is, during the first two rotations of the SRC. The overall GHG balance of the 4 years of the study was an emission of 1.90 (±1.37) Mg CO2eq ha−1; this indicated that soil trace gas emissions offset the CO2 uptake by the plantation. CH4 and N2O contributed almost equally to offset the CO2 uptake of −5.28 (±0.67) Mg CO2eq ha−1 with an overall emission of 3.56 (±0.35) Mg CO2eq ha−1 of N2O and of 3.53 (±0.85) Mg CO2eq ha−1 of CH4. N2O emissions mostly occurred during one single peak a few months after the site was converted to SRC; this peak comprised 44% of the total N2O loss during the two rotations. Accurately capturing emission events proved to be critical for deriving correct estimates of the GHG balance. The nitrogen (N) content of the soil and the water table depth were the two drivers that best explained the variability in N2O and CH4, respectively. This study underlines the importance of the ‘non‐CO2 GHGs’ on the overall balance. Further long‐term investigations of soil trace gas emissions should monitor the N content and the mineralization rate of the soil, as well as the microbial community, as drivers of the trace gas emissions.

Collaboration


Dive into the Donatella Zona's collaboration.

Top Co-Authors

Avatar

Walter C. Oechel

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beniamino Gioli

National Research Council

View shared research outputs
Top Co-Authors

Avatar

David A. Lipson

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugénie S. Euskirchen

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Yoshinobu Harazono

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Anna Liljedahl

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larry D. Hinzman

University of Alaska Fairbanks

View shared research outputs
Researchain Logo
Decentralizing Knowledge