Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donato A. Rivas is active.

Publication


Featured researches published by Donato A. Rivas.


The Journal of Clinical Endocrinology and Metabolism | 2013

A Randomized Study on the Effect of Vitamin D3 Supplementation on Skeletal Muscle Morphology and Vitamin D Receptor Concentration in Older Women

Lisa Ceglia; Sathit Niramitmahapanya; Mauricio da Silva Morais; Donato A. Rivas; Susan S. Harris; Heike A. Bischoff-Ferrari; Roger A. Fielding; Bess Dawson-Hughes

CONTEXT Studies examining whether vitamin D supplementation increases muscle mass or muscle-specific vitamin D receptor (VDR) concentration are lacking. OBJECTIVE Our objective was to determine whether vitamin D₃ 4000 IU/d alters muscle fiber cross-sectional area (FCSA) and intramyonuclear VDR concentration over 4 months. DESIGN AND SETTING This was a randomized, double-blind, placebo-controlled study in a single center. PARTICIPANTS Participants were 21 mobility-limited women (aged ≥ 65 years) with serum 25-hydroxyvitamin D (25OHD) levels of 22.5 to 60 nmol/L. MAIN OUTCOME MEASURES Baseline and 4-month FCSA and intramyonuclear VDR were measured from vastus lateralis muscle cross-sections probed for muscle fiber type (I/IIa/IIx) and VDR using immunofluorescence. RESULTS At baseline, mean (±SD) age was 78 ± 5 years; body mass index was 27 ± 5 kg/m², 25OHD was 46.3 ± 9.5 nmol/L, and a short physical performance battery score was 7.95 ± 1.57 out of 12. At 4 months, 25OHD level was 52.5 ± 17.1 (placebo) vs 80.0 ± 11.5 nmol/L (vitamin D [VD]; P < .01), and change in 25OHD level was strongly associated with percent change in intramyonuclear VDR concentration-independent of group (r = 0.87, P < .001). By treatment group, percent change in intramyonuclear VDR concentration was 7.8% ± 18.2% (placebo) vs 29.7% ± 11.7% (VD; P = .03) with a more pronounced group difference in type II vs I fibers. Percent change in total (type I/II) FCSA was -7.4% ± 18.9% (placebo) vs 10.6% ± 20.0% (VD; P = .048). CONCLUSION Vitamin D₃ supplementation increased intramyonuclear VDR concentration by 30% and increased muscle fiber size by 10% in older, mobility-limited, vitamin D-insufficient women. Further work is needed to determine whether the observed effect of vitamin D on fiber size is mediated by the VDR and to identify which signaling pathways are involved.


Diabetes | 2007

Tissue-Specific Effects of Rosiglitazone and Exercise in the Treatment of Lipid-Induced Insulin Resistance

Sarah J. Lessard; Donato A. Rivas; Zhi-Ping Chen; Arend Bonen; Mark A. Febbraio; Donald W. Reeder; Bruce E. Kemp; Ben B. Yaspelkis; John A. Hawley

Both pharmacological intervention (i.e., thiazolidinediones [TZDs]) and lifestyle modification (i.e., exercise training) are clinically effective treatments for improving whole-body insulin sensitivity. However, the mechanism(s) by which these therapies reverse lipid-induced insulin resistance in skeletal muscle is unclear. We determined the effects of 4 weeks of rosiglitazone treatment and exercise training and their combined actions (rosiglitazone treatment and exercise training) on lipid and glucose metabolism in high-fat–fed rats. High-fat feeding resulted in decreased muscle insulin sensitivity, which was associated with increased rates of palmitate uptake and the accumulation of the fatty acid metabolites ceramide and diacylglycerol. Impairments in lipid metabolism were accompanied by defects in the Akt/AS160 signaling pathway. Exercise training, but not rosiglitazone treatment, reversed these impairments, resulting in improved insulin-stimulated glucose transport and increased rates of fatty acid oxidation in skeletal muscle. The improvements to glucose and lipid metabolism observed with exercise training were associated with increased AMP-activated protein kinase α1 activity; increased expression of Akt1, peroxisome proliferator–activated receptor γ coactivator 1, and GLUT4; and a decrease in AS160 expression. In contrast, rosiglitazone treatment exacerbated lipid accumulation and decreased insulin-stimulated glucose transport in skeletal muscle. However, rosiglitazone, but not exercise training, increased adipose tissue GLUT4 and acetyl CoA carboxylase expression. Both exercise training and rosiglitazone decreased liver triacylglycerol content. Although both interventions can improve whole-body insulin sensitivity, our results show that they produce divergent effects on protein expression and triglyceride storage in different tissues. Accordingly, exercise training and rosiglitazone may act as complementary therapies for the treatment of insulin resistance.


The FASEB Journal | 2014

Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling

Donato A. Rivas; Sarah J. Lessard; Nicholas P. Rice; Michael S. Lustgarten; Kawai So; Laurie J. Goodyear; Laurence D. Parnell; Roger A. Fielding

Older individuals have a reduced capacity to induce muscle hypertrophy with resistance exercise (RE), which may contribute to the age‐induced loss of muscle mass and function, sarcopenia. We tested the novel hypothesis that dysregulation of microRNAs (miRNAs) may contribute to reduced muscle plasticity with aging. Skeletal muscle expression profiling of protein‐coding genes and miRNA was performed in younger (YNG) and older (OLD) men after an acute bout of RE. 21 miRNAs were altered by RE in YNG men, while no RE‐induced changes in miRNA expression were observed in OLD men. This striking absence in miRNA regulation in OLD men was associated with blunted transcription of mRNAs, with only 42 genes altered in OLD men vs. 175 in YNG men following RE, demonstrating a reduced adaptability of aging muscle to exercise. Integrated bioinformatics analysis identified miR‐126 as an important regulator of the transcriptional response to exercise and reduced lean mass in OLD men. Manipulation of miR‐126 levels in myocytes, in vitro, revealed its direct effects on the expression of regulators of skeletal muscle growth and activation of insulin growth factor 1 (IGF‐1) signaling. This work identifies a mechanistic role of miRNA in the adaptation of muscle to anabolic stimulation and reveals a significant impairment in exercise‐induced miRNA/mRNA regulation with aging.—Rivas, D. A., Lessard, S. J., Rice, N. P., Lustgarten, M. S., So, K., Goodyear, L. J., Parnell, L. D., Fielding, R. A. Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF‐1 signaling. FASEB J. 28, 4133‐4147 (2014). www.fasebj.org


Journal of Cachexia, Sarcopenia and Muscle | 2012

Role and potential mechanisms of anabolic resistance in sarcopenia

Prashanth H. Haran; Donato A. Rivas; Roger A. Fielding

There is pressing need to understand the aging process to better cope with its associated physical and societal costs. The age-related muscle wasting known as sarcopenia is a major contributor to the problems faced by the elderly. By hindering mobility and reducing strength, it greatly diminishes independence and quality of life. In studying the factors that contribute to the development of sarcopenia, the focus is shifting to the study of disordered muscle anabolism. The abnormal response of muscle to previously well-established anabolic stimuli is known as anabolic resistance, and may be a key factor in the development and progression of sarcopenia. Factors such as age, obesity, inflammation, and lipotoxicity contribute to anabolic resistance, and have been studied either directly or indirectly in cell systems and whole animals. Understanding the physiologic and mechanistic basis of anabolic resistance could be the key to formulating new and targeted interventions that would ease the burden currently borne by the world’s aged population.


Endocrinology | 2009

Impaired Skeletal Muscle β-Adrenergic Activation and Lipolysis Are Associated with Whole-Body Insulin Resistance in Rats Bred for Low Intrinsic Exercise Capacity

Sarah J. Lessard; Donato A. Rivas; Zhu-Ping Chen; Bryce J. W. van Denderen; Matthew J. Watt; Lauren G. Koch; Steven L. Britton; Bruce E. Kemp; John A. Hawley

Rats selectively bred for high endurance running capacity (HCR) have higher insulin sensitivity and improved metabolic health compared with those bred for low endurance capacity (LCR). We investigated several skeletal muscle characteristics, in vitro and in vivo, that could contribute to the metabolic phenotypes observed in sedentary LCR and HCR rats. After 16 generations of selective breeding, HCR had approximately 400% higher running capacity (P < 0.001), improved insulin sensitivity (P < 0.001), and lower fasting plasma glucose and triglycerides (P < 0.05) compared with LCR. Skeletal muscle ceramide and diacylglycerol content, basal AMP-activated protein kinase (AMPK) activity, and basal lipolysis were similar between LCR and HCR. However, the stimulation of lipolysis in response to 10 mum isoproterenol was 70% higher in HCR (P = 0.004). Impaired isoproterenol sensitivity in LCR was associated with lower basal triacylglycerol lipase activity, Ser660 phosphorylation of HSL, and beta2-adrenergic receptor protein content in skeletal muscle. Expression of the orphan nuclear receptor Nur77, which is induced by beta-adrenergic signaling and is associated with insulin sensitivity, was lower in LCR (P < 0.05). Muscle protein content of Nur77 target genes, including uncoupling protein 3, fatty acid translocase/CD36, and the AMPK gamma3 subunit were also lower in LCR (P < 0.05). Our investigation associates whole-body insulin resistance with impaired beta-adrenergic response and reduced expression of genes that are critical regulators of glucose and lipid metabolism in skeletal muscle. We identify impaired beta-adrenergic signal transduction as a potential mechanism for impaired metabolic health after artificial selection for low intrinsic exercise capacity.


Journal of Applied Physiology | 2008

Fat adaptation followed by carbohydrate restoration increases AMPK activity in skeletal muscle from trained humans.

Wee Kian Yeo; Sarah J. Lessard; Zhi-Ping Chen; Andrew Garnham; Louise M. Burke; Donato A. Rivas; Bruce E. Kemp; John A. Hawley

We have previously reported that 5 days of a high-fat diet followed by 1 day of high-carbohydrate intake (Fat-adapt) increased rates of fat oxidation and decreased rates of muscle glycogenolysis during submaximal cycling compared with consumption of an isoenergetic high-carbohydrate diet (HCHO) for 6 days (Burke et al. J Appl Physiol 89: 2413-2421, 2000; Stellingwerff et al. Am J Physiol Endocrinol Metab 290: E380-E388, 2006). To determine potential mechanisms underlying shifts in substrate selection, eight trained subjects performed Fat-adapt and HCHO. On day 7, subjects performed 1-h cycling at 70% peak O2 uptake. Muscle biopsies were taken immediately before and after exercise. Resting muscle glycogen content was similar between treatments, but muscle triglyceride levels were higher after Fat-adapt (P < 0.05). Resting AMPK-alpha1 and -alpha2 activity was higher after Fat-adapt (P = 0.02 and P = 0.05, respectively), while the phosphorylation of AMPKs downstream target, acetyl-CoA carboxylase (pACC at Ser221), tended to be elevated after Fat-adapt (P = 0.09). Both the respiratory exchange ratio (P < 0.01) and muscle glycogen utilization (P < 0.05) were lower during exercise after Fat-adapt. Exercise increased AMPK-alpha1 activity after HCHO (P = 0.03) but not Fat-adapt. Exercise was associated with an increase in pACC at Ser221 for both dietary treatments (P < 0.05), with postexercise pACC Ser221 higher after Fat-adapt (P = 0.02). In conclusion, compared with HCHO, Fat-adapt increased resting muscle triglyceride stores and resting AMPK-alpha1 and -alpha2 activity. Fat-adapt also resulted in higher rates of whole body fat oxidation, reduced muscle glycogenolysis, and attenuated the exercise-induced rise in AMPK-alpha1 and AMPK-alpha2 activity compared with HCHO. Our results demonstrate that AMPK-alpha1 and AMPK-alpha2 activity and fuel selection in skeletal muscle in response to exercise can be manipulated by diet and/or the interactive effects of diet and exercise training.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Low intrinsic running capacity is associated with reduced skeletal muscle substrate oxidation and lower mitochondrial content in white skeletal muscle

Donato A. Rivas; Sarah J. Lessard; Misato Saito; Anna Friedhuber; Lauren G. Koch; Steven L. Britton; Ben B. Yaspelkis; John A. Hawley

Chronic metabolic diseases develop from the complex interaction of environmental and genetic factors, although the extent to which each contributes to these disorders is unknown. Here, we test the hypothesis that artificial selection for low intrinsic aerobic running capacity is associated with reduced skeletal muscle metabolism and impaired metabolic health. Rat models for low- (LCR) and high- (HCR) intrinsic running capacity were derived from genetically heterogeneous N:NIH stock for 20 generations. Artificial selection produced a 530% difference in running capacity between LCR/HCR, which was associated with significant functional differences in glucose and lipid handling by skeletal muscle, as assessed by hindlimb perfusion. LCR had reduced rates of skeletal muscle glucose uptake (∼30%; P = 0.04), glucose oxidation (∼50%; P = 0.04), and lipid oxidation (∼40%; P = 0.02). Artificial selection for low aerobic capacity was also linked with reduced molecular signaling, decreased muscle glycogen, and triglyceride storage, and a lower mitochondrial content in skeletal muscle, with the most profound changes to these parameters evident in white rather than red muscle. We show that a low intrinsic aerobic running capacity confers reduced insulin sensitivity in skeletal muscle and is associated with impaired markers of metabolic health compared with high intrinsic running capacity. Furthermore, selection for high running capacity, in the absence of exercise training, endows increased skeletal muscle insulin sensitivity and oxidative capacity in specifically white muscle rather than red muscle. These data provide evidence that differences in white muscle may have a role in the divergent aerobic capacity observed in this generation of LCR/HCR.


Journal of Applied Physiology | 2012

Increased ceramide content and NFκB signaling may contribute to the attenuation of anabolic signaling after resistance exercise in aged males

Donato A. Rivas; Evan P. Morris; Prashanth H. Haran; Evan P. Pasha; Mauricio da Silva Morais; Gregory G. Dolnikowski; Edward M. Phillips; Roger A. Fielding

One of the most fundamental adaptive physiological events is the response of skeletal muscle to high-intensity resistance exercise, resulting in increased protein synthesis and ultimately larger muscle mass. However, muscle growth in response to contraction is attenuated in older humans. Impaired contractile-induced muscle growth may contribute to sarcopenia: the age-associated loss of muscle mass and function that is manifested by loss of strength, contractile capacity, and endurance. We hypothesized that the storage of ceramide would be increased in older individuals and this would be associated with increases in NFκB signaling and a decreased anabolic response to exercise. To test this hypothesis we measured ceramides at rest and anabolic and NFκB signaling after an acute bout of high-intensity resistance exercise in young and older males. Using lipidomics analysis we show there was a 156% increase in the accumulation of C16:0-ceramide (P < 0.05) and a 30% increase in C20:0-ceramide (P < 0.05) in skeletal muscle with aging, although there was no observable difference in total ceramide. C16:0-ceramide content was negatively correlated (P = 0.008) with lower leg lean mass. Aging was associated with a ~60% increase in the phosphorylation of the proinflammatory transcription factor NFκB in the total and nuclear cell fractions (P < 0.05). Furthermore, there was an attenuated activation of anabolic signaling molecules such as Akt (P < 0.05), FOXO1 (P < 0.05), and S6K1 (P < 0.05) after an acute bout of high-intensity resistance exercise in older males. We conclude that ceramide may have a significant role in the attenuation of contractile-induced skeletal muscle adaptations and atrophy that is observed with aging.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Exercise training reverses impaired skeletal muscle metabolism induced by artificial selection for low aerobic capacity

Sarah J. Lessard; Donato A. Rivas; Erin J. Stephenson; Ben B. Yaspelkis; Lauren G. Koch; Steven L. Britton; John A. Hawley

We have used a novel model of genetically imparted endurance exercise capacity and metabolic health to study the genetic and environmental contributions to skeletal muscle glucose and lipid metabolism. We hypothesized that metabolic abnormalities associated with low intrinsic running capacity would be ameliorated by exercise training. Selective breeding for 22 generations resulted in rat models with a fivefold difference in intrinsic aerobic capacity. Low (LCR)- and high (HCR)-capacity runners remained sedentary (SED) or underwent 6 wk of exercise training (EXT). Insulin-stimulated glucose transport, insulin signal transduction, and rates of palmitate oxidation were lower in LCR SED vs. HCR SED (P < 0.05). Decreases in glucose and lipid metabolism were associated with decreased β₂-adrenergic receptor (β₂-AR), and reduced expression of Nur77 target proteins that are critical regulators of muscle glucose and lipid metabolism [uncoupling protein-3 (UCP3), fatty acid transporter (FAT)/CD36; P < 0.01 and P < 0.05, respectively]. EXT reversed the impairments to glucose and lipid metabolism observed in the skeletal muscle of LCR, while increasing the expression of β₂-AR, Nur77, GLUT4, UCP3, and FAT/CD36 (P < 0.05) in this tissue. However, no metabolic improvements were observed following exercise training in HCR. Our results demonstrate that metabolic impairments resulting from genetic factors (low intrinsic aerobic capacity) can be overcome by an environmental intervention (exercise training). Furthermore, we identify Nur77 as a potential mechanism for improved skeletal muscle metabolism in response to EXT.


Diabetes | 2013

Resistance to aerobic exercise training causes metabolic dysfunction and reveals novel exercise-regulated signaling networks

Sarah J. Lessard; Donato A. Rivas; Ana Barbara Alves-Wagner; Michael F. Hirshman; Iain J. Gallagher; Dumitru Constantin-Teodosiu; Ryan P. Atkins; Paul L. Greenhaff; Nathan R. Qi; Thomas Gustafsson; Roger A. Fielding; James A. Timmons; Steven L. Britton; Lauren G. Koch; Laurie J. Goodyear

Low aerobic exercise capacity is a risk factor for diabetes and a strong predictor of mortality, yet some individuals are “exercise-resistant” and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease risk, we used selective breeding for 15 generations to develop rat models of low and high aerobic response to training. Before exercise training, rats selected as low and high responders had similar exercise capacities. However, after 8 weeks of treadmill training, low responders failed to improve their exercise capacity, whereas high responders improved by 54%. Remarkably, low responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise-resistant phenotype segregates with disease risk. Low responders had impaired exercise-induced angiogenesis in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low responders. Low responders had increased stress/inflammatory signaling and altered transforming growth factor-β signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system, we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease.

Collaboration


Dive into the Donato A. Rivas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben B. Yaspelkis

California State University

View shared research outputs
Top Co-Authors

Avatar

John A. Hawley

Australian Catholic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee M. Margolis

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald W. Reeder

California State University

View shared research outputs
Top Co-Authors

Avatar

Erin J. Stephenson

University of Tennessee Health Science Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge